Применение метода частотных диаграмм в исследовании устойчивости систем с логическими алгоритмами управления
Рефераты >> Программирование и компьютеры >> Применение метода частотных диаграмм в исследовании устойчивости систем с логическими алгоритмами управления

(-) x G(p) W(p)

Рисунок 3.

Это означает, что аналитической записи (10) соответствуют два структурных представления исследуемой СПС, причем второе позволяет рассматривать систему (10) как релейную систему с изменяемым ограничение, когда |x| - var.

Далее перейдем к анализу нашего метода.

Согласно частотной теоремы (10), для абсолютной устойчивости системы на рис. 3 лостаточно, чтобы при всех w, изменяющихся от - ¥ до + ¥, выполнялось соотношение:

Re{[1+w)][1+W(jw)]}>0,

а гадографmW(jw)+1 при соответствовал критерию Найквиста.

Для исследуемой системы условие (3) удобнее записать в виде

(4) и (5).

На рис. 4 приведенны возможные нелинейные характеристики из класса М() и годографы W(jw), расположенные таким образом, что согласно (4) и (5) возможна абсолютная устойчивость.

y ^

y=g ()

|x| y=g (при =0)

>

0

“а” “б”

“в” “г”

Рисунок 4.

В рассматриваемом случае (10) при

W(p)=, когда

W(p)= W(p)G(p), G(p)=p+1,

годограф W(jw) системы на рис. 5.

j

W(jw)

w=¥

> <

=

w=0

Рисунок 5.

В случае (10) справедливы графические формы на рис. 4 в,г, т.е. исследуемая система абсолютно устойчива в смысле кругового критерия (3) или (5) при

> (14)

Интересно заметить, что достаточные условия абсолютной устойчивости по Ляпунову

а > 0 , y(t) > 0

и

a > c

для рассматриваемого случая совпадают с достаточными условиями абсолютной устойчивости, полученными для кругового критерия (14), если выполняется требование

y(t) > 0 (15)

поскольку, согласно (11) и (13) a=a=.

Докажем это, используя условия существования скользящего режима

-k£y(t)=ck


Страница: