Двоичное кодирование информации
Рефераты >> Программирование и компьютеры >> Двоичное кодирование информации

В компьютере для представления информации использу­ется двоичное кодирование, так как удалось создать надеж­но работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

• электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

• участок поверхности магнитного носителя информации (намагничен/размагничен);

• участок поверхности лазерного диска (отражает/не отра­жает);

• триггер может устойчиво находиться в од­ном из двух состояний, широко используется в оператив­ной памяти компьютера.

Все виды информации в компьютере кодируются на ма­шинном языке, в виде логических последовательностей ну­лей и единиц.

Информация в компьютере представлена в дво­ичном коде, алфавит которого состоит из двух цифр (0 и 1).

Цифры двоичного кода можно рассматривать как два рав­новероятных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состо­яний (одной из двух цифр) и, следовательно, она несет коли­чество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосоче­тания Binary digiT (двоичная цифра).

Важно, что каждая цифра машинного двоичного кода не­сет информацию в 1 бит. Таким образом, две цифры несут информацию в 2 бита, три цифры — в 3 бита и так далее. Количество информации в битах равно количеству цифр двоичного машинного кода.

Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Представление числовой информации с помощью систем счисления.

Для записи информации о количестве объектов использу­ются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисле­ния. Алфавит систем счисления состоит из символов, кото­рые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хо­рошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Система счисления — это знаковая система, в ко­торой числа записываются по определенным пра­вилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В пози­ционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Римская непозиционная система счисления. Самой рас­пространенной из непозиционных систем счисления являет­ся римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).

Значение цифры не зависит от ее положения в числе. На­пример, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.

Величина числа в римской системе счисления определя­ется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется. Например, запись десятичного чис­ла 1998 в римской системе счисления будет выглядеть сле­дующим образом:

MCMXCVIII= 1000 + (1000 - 100) + (100 - 10) + 5 + 1 + 1 + 1.

Позиционные системы счисления. Первая позиционная система счисления была придумана еще в Древнем Вавило­не, причем вавилонская нумерация была шестидесятерич-ной, то есть в ней использовалось шестьдесят цифр! Инте­ресно, что до сих пор при измерении времени мы используем основание, равное 60 (в 1 минуте содержится 60 секунд, а в 1 часе — 60 минут).

В XIX веке довольно широкое распространение получи­ла двенадцатеричная система счисления. До сих пор мы ча­сто употребляем дюжину (число 12): в сутках две дюжины часов, круг содержит тридцать дюжин градусов и так да­лее.

Наиболее распространенными в настоящее время позици­онными системами счисления являются десятичная, двоич­ная, восьмеричная и шестнадцатеричная. Каждая позицион­ная система имеет определенный алфавит цифр и основание.

В позиционных системах счисления основание системы равно количеству цифр (знаков в ее ал­фавите) и определяет, во сколько раз различают­ся значения одинаковых цифр, стоящих в сосед­них позициях числа.

Десятичная система счисления имеет алфавит цифр, кото­рый состоит из десяти всем известных, так называемых араб­ских, цифр, и основание, равное 10, двоичная — две цифры и основание 2, восьмеричная — восемь цифр и основание 8, шестнадцатеричная — шестнадцать цифр (в качестве цифр используются и буквы латинского алфавита) и основание 16

Десятичная система счисления. Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается триж­ды, причем самая правая цифра 5 обозначает пять единиц, вторая справа — пять десятков и, наконец, третья справа — пять сотен.

Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. В десятичной системе цифра, находящаяся в крайней справа позиции (разряде), обозначает количество единиц, цифра, смещенная на одну позицию влево, — коли­чество десятков, еще левее — сотен, затем тысяч и так да­лее. Соответственно имеем разряд единиц, разряд десятков и так далее.

Число 555 записано в привычной для нас свернутой фор­ме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различ­ные степени числа 10.

В развернутой форме записи числа такое умножение за­писывается в явной форме. Так, в развернутой форме запись числа 555 в десятичной системе будет выглядеть следую­щим образом:

55510 = 5-Ю2 + 5101 + 5-10°.

Как видно из примера, число в позиционной системе счисления записывается в виде суммы числового ряда степе­ней основания (в данном случае 10), в качестве коэффициен­тов которых выступают цифры данного числа.

Для записи десятичных дробей используются отрицатель­ные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:

555,5510 = 5-Ю2 + 5-Ю1 + 5-10°+ 5-Ю"1 + 5-Ю"2. В общем случае в десятичной системе счисления запись числа А10, которое содержит п целых разрядов числа и т дробных разрядов числа, выглядит так:

Коэффициенты at в этой записи являются цифрами деся­тичного числа, которое в свернутой форме записывается так:

Из вышеприведенных формул видно, что умножение или деление десятичного числа на 10 (величину основания) при­водит к перемещению запятой, отделяющей целую часть от дробной, на один разряд соответственно вправо или влево. Например:

Двоичная система счисления. В двоичной системе счисле­ния основание равно 2, а алфавит состоит из двух цифр (0 и 1). Следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1.

Например, развернутая запись двоичного числа может выглядеть так:

Свернутая форма этого же числа:

А2 = 101,012.

В общем случае в двоичной системе запись числа А2, ко­торое содержит п целых разрядов числа и т дробных разря­дов числа, выглядит так:


Страница: