Видеоадаптеры

Каждый пользователь может заметить, что при 8 битном цвете любое графическое изображение смотрится не так хорошо, как при 16 битном представлении цвета. Однако, большинство пользователей не могут заметить разницы при просмотре хорошо сделаного графического изображения в режиме 16 битного и 32 битного представления цвета. Фраза "хорошо сделанное графическое изображение" означает растрирование (dithering - дизеринг) -- процесс смешивания двух соседних цветов, для получения третьего с одновременным обеспечением плавных переходов между элементами изображения. В результате использования технологии растрирования получаются изображения, которые смотрятся практически одинакова в режимах с разной глубиной представления цвета.

Для 16 битного представления цвета требуется в два раза больше памяти, чем для 8 битного, а для 32 битного представления цвета требуется в два раза больше памяти, чем для 16 битного. В связи с тем, что графические адаптеры имеют ограниченные объемы памяти, экономия этого ресурса становится одной из приоритетных задач. Ко всему прочему, отображение 32 битных данных зачастую происходит дольше, чем отображение 16 битных данных. А это уже относится к проблеме производительности, о чем тоже не стоит забывать. Именно поэтому обычному поьзователю стоит использовать 16 битное представление цвета в Windows95/98/NT.

Пользователь или приложение выбирают тот режим представления цвета, который для них наиболее удобен. Текстовый процессор, электронная таблица и 2D игры могут прекрасно работать в режиме 8 битного представления цвета. Видеофильмы, 3D игры и 3D приложения обычно используют 16 битный режим представления цвета, в качестве компромисса между качеством изображения и производительностью. При использовании программ для просмотра высококачественных фотографий, их редактирования, а так же приложений для создания графики лучше всего использовать 24/32 битное представление цвета.

Как же узнать, в каком режиме работает RAMDAC? Если Вы используете Windows, то у Вас есть возможность выбрать глубину представления цвета между режимами 8, 16 или 24/32 бит. В 8 битном режиме используется палитра, т.е. RAMDAC работает со скоростью 205 MHz, во всех других режимах, с другой глубиной представления цвета, палитра не используется и RAMDAC работает со скоростью 220 MHz. Если запускается на выполнение приложение, работающее в полноэкранном режиме (например, в таком режиме работают большинство игр), то тогда само приложение определяет, в каком режиме будет работать RAMDAC. Иногда приложение выбрав режим работы сообщает эту информацию пользователю. Но в большинстве случаев такого не происходит.

Пользователь может узнать, в каком режиме работает RAMDAC, проделав следующие действия: Найдите поверхность, в которой есть плавный переход от одного цвета к другому (как, например в небе у вас над головой). Если переход от одного цвета к другому выглядит так, будто состоит из перемежающихся точек, сильно отличающихся по цвету, значит ваше приложение работает в 8 битном режиме представления цвета. В противном случае, т.е. если переход от одного цвета к другому действительно плавный, ваше приложение работает с другой глубиной представления цвета. При этом, не лишне еще раз напомнить, что средний пользователь не может с уверенностью опредилить, с какой глубиной представления цвета он имеет дело, с 16 или 24/32 бит.

Удостовериться, что заявленные значения скорости работы RAMDAC правда - достаточно просто. Если известно, в каком разрешении вы работаете, например 1024х768, и с какой частотой происходит обновление изображения (refresh rate), например 75 Hz, значит можно узнать какова скорость работы DAC. Скорости в 220 MHz вполне достаточно для отображения в режимах 1280х1024 при 85 Hz и 1600х1200 при 75 Hz. Для режима 1600х1200 при 85 Hz требуется скорость в 250 MHz. Известно, что по Европейским стандартам во всех разрешениях должна поддерживаться частота обновления экрана в 85 Hz, однако лишь немногие модели современных мониторов могут работать в режиме 1600х1200 при 85 Hz.

Напомним известные факты: если частота обновления экрана слишком низкая, то пользователю будет заметно мерцание изображения, в следствии чего можно испортить зрение. Частота обновления экрана в 75 Hz уже достаточно быстрая, чтобы глаз человека мог заметить мерцание. Поэтому, гораздо более разумно сосредоточить внимание на значениях частоты обновления изображения, а не на скорости работы DAC, тем более, что эти значения взаимосвязаны.

Графические акселераторы (ускорители) — специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета. Видеоакселераторы

Изображение, которое мы видим на экране монитора, представляет собой выводимое специальным цифроаналоговым преобразователем RAMDAC (Random Access Memory Digital to Analog Converter) и устройством развертки содержимое видеопамяти. Это содержимое может изменяться как центральным процессором, так и графическим процессором видеокарты — ускорителем двухмерной графики (синонимы: 2D-ускоритель, 2D-акселератор, Windows-акселератор или GDI-акселератор). Современные оконные интерфейсы требуют быстрой (за десятые доли секунды) перерисовки содержимого экрана при открытии/закрытии окон, их перемещении и т. п., иначе пользователь будет чувствовать недостаточно быструю реакцию системы на его действия. Для этого процессор должен был бы обрабатывать данные и передавать их по шине со скоростью, всего в 2-3 раза меньшей, чем скорость работы RAMDAC, а это десятки и даже сотни мегабайт в секунду, что практически нереально даже по современным меркам. В свое время для повышения быстродействия системы были разработаны локальные шины, а позднее — 2D-ускорители, которые представляют собой специализированные графические процессоры, способные самостоятельно рисовать на экране курсор мыши, элементы окон и стандартные геометрические фигуры, предусмотренные GDI — графической библиотекой Windows. 2D-ускорители обмениваются данными с видеопамятью по своей собственной шине, не загружая системную шину процессора. По системной шине 2D-ускоритель получает только GDI-инструкции от центрального процессора, при этом объем передаваемых данных и загрузка процессора в сотни раз меньше.

Современные 2D-ускорители имеют 64- или 128-разрядную шину данных, причем для эффективного использования возможностей этой шины на видеокарте должно быть установлено 2 или 4 Мбайт видеопамяти соответственно, иначе данные будут передаваться по вдвое более узкой шине с соответствующей потерей в быстродействии.

Можно сказать, что к настоящему моменту 2D-ускорители достигли совершенства. Все они работают столь быстро, что несмотря на то, что их производительность на специальных тестах может отличаться от модели к модели на 10-15%, пользователь, скорее всего, не заметит этого различия. Поэтому при выборе 2D-ускорителя следует обратить внимание на другие факторы: качество изображения, наличие дополнительных функций, качество и функциональность драйверов, поддерживаемые частоты кадровой развертки, совместимость с VESA (для любителей DOS-игр) и т. п. Микросхемы 2D-ускорителей в настоящее время производят ATI, Cirrus Logic, Chips&Technologies, Matrox, Number Nine, S3, Trident, Tseng Labs и другие компании.


Страница: