Динамическое представление сигналов
Рефераты >> Программирование и компьютеры >> Динамическое представление сигналов

¥

S(t) = åh (t) (7)

k= - ¥k

В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :

tk< t < tk+1

Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага D, то

¥1

S(t) = å Sk --- [ s(t - tk) - s(t - tk - D) ] D

k=- ¥D

Переходя к пределу при D® 0 , необходимо суммирование заменить интегрированием по формальной переменной t, дифференциал которой dt ,будет отвечать величине D .

Поскольку

1

lim [ s(t - tk) - s(t - tk - D) ] ---

D®0 D

получим искомую формулу динамического представления сигнала

¥

S (t) = ò s (t) d(t - t) dt

- ¥

Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен d - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.[3]

Из определения дельта-функции следует (3) . Следовательно, интеграл дельта-функции от - ¥ до t есть единичный скачок , и дельта-функцию можно рассматривать как производную единичного скачка :

d(t) = 1’ (t) ;

d(t-t0) = 1’ (t-t0) .

Обобщенные функции как математические модели сигналов.

В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция d(t)не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ¦(t)может служить, например, значение интеграла

¥

ò¦(t) j(t) dt (8)

- ¥

при известной функции j(t), которую называют пробной функцией.

Каждой функции j(t)отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций j(t). Непосредственно видно, что данный функционал линеен, то есть

(¦, aj1+bj2) = a(¦,j1) + b(¦,j2).

Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций j(t)задана обобщенная функция ¦(t) [4]. Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции , даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.

И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.

Литература :

1. А. Л. Зиновьев, Л. И. Филипов ВВЕДЕНИЕ В

ТЕОРИЮ СИГНАЛОВ И ЦЕПЕЙ.

2. С. И. Баскаков РАДИОТЕХНИЧЕСКИЕ ЦЕПИ

И СИГНАЛЫ.

[1] Также эту функцию называют единичной импульсной функцией,

[2] Говорят, что дельта-функция сосредоточена в этой точке.

[3] Отсюда вытекает структурная схема систем, осуществляющей измерение мгновенных значений аналогового сигнала S(t). Система состоит из двух звеньев : перемножителя и интегратора.

[4] Обобщенные функции иногда называют также распределениями.


Страница: