Организация ЭВМ

Вычислительные возможности микро-ЭВМ оказались доста­точными для создания на их основе в рамках ЭВМ четвертого поколения, нового по ряду эксплуатационных характеристик и способу использования типа вычислительных устройств - персональных ЭВМ , получивших в настоящее время широкое распространение.

В ЭВМ четвертого поколения достигается дальнейшее упро­щение контактов человека с ЭВМ путем повышения уровня ма­шинного языка, значительного расширения функций устройств (терминалов), ис­пользуемых человеком для связи с ЭВМ, начинается практиче­ская реализация голосовой связи с ЭВМ. Использование БИС позволяет аппаратурными средствами реализовывать неко­торые функции программ операционных систем (аппаратурная реализация трансляторов с алгоритмических языков высокого уровня и др.), что способствует увеличению производительно­сти машин.

Характерным для крупных ЭВМ четвертого поколения является наличие нескольких процессоров, ориентированных на выполнение определенных операций, процедур или на решение некоторых классов задач. В рамках этого поколения создаются многопроцессорные вычислительные системы с быстродей­ствием в несколько десятков и даже сотен миллионов операций в секунду. К этому же поколению относятся и многопроцессорные управляющие комплексы по­вышенной надежности с автоматическим изменением струк­туры (автоматической реконфигурацией).

Примером крупных вычислительных систем, которые сле­дует отнести к четвертому поколению, является многопроцес­сорный комплекс «Эльбрус-2» с суммарным быстродействием до 100 млн. опер/с, с системой команд, приближенной к языкам высокого уровня, стековой организацией обращений к памяти.

В 90-е годы прошлого века определились контуры нового, пятого поколения ЭВМ. В значительной степени этому способствовали публикации сведений о проекте ЭВМ пятого поколения, разра­батываемом ведущими японскими фирмами и научными орга­низациями, поставившими перед собой цель захвата в 90-х го­дах японской промышленностью мирового лидерства в обла­сти вычислительной техники. Поэтому этот проект часто называют “японским вызовом”. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения, помимо более высокой производительности и надежности при более низкой стоимости должны, обладать качественно новыми свойствами. В первую очередь к ним относятся возможность взаимодействия с ЭВМ при помощи языка, чело­веческой речи и графических изображений, способность си­стемы обучаться, производить ассоциативную обработку ин­формации, делать логические суждения, вести “разумную” беседу с человеком в форме вопросов и ответов. Вычислительные системы пятого поколения должны также “понимать” содержимое базы данных, которая при этом превращается в “базу знаний”, и использовать эти “зна­ния” при решении задач. В настоящее время исследования по подобным проблемам ведутся и в России.

1.2 Характеристики ЭВМ

Электронная вычислительная машина — это комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Выбирая ЭВМ для решения своих задач, пользователь интересуется функциональными возможностями технических и программных средств, начиная со следующих характеристик ЭВМ:

- технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации и др.);

- характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

- состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

Важнейшими характеристиками ЭВМ являются быстродействие и производительность. Эти характеристики тесно связаны. Быстродействие характеризуется числом определенного типа команд, выполняемых ЭВМ за одну секунду. Производительность — это объем работ (например, число стандартных программ), выполняемый ЭВМ в единицу времени.

Определение характеристик быстродействия и производительности представляет собой очень сложную задачу, не имеющую единых подходов и методов решения.

Одной из единиц измерения быстродействия была и остается величина, измеряемая в MIPS (Million Instructions Per Second — миллион операций в секунду). В качестве операций здесь обычно рассматриваются наиболее короткие операции типа сложения. MIPS широко использовалась для оценки больших машин второго и третьего поколений, но для оценки современных ЭВМ применяется достаточно редко по следующим причинам:

- набор команд современных микропроцессоров может включать сотни команд, значительно отличающихся друг от друга длительностью выполнения;

- значение, выраженное в MIPS, меняется в зависимости от особенностей программ;

- значение MIPS и значение производительности могут противоречить друг другу, когда оцениваются разнотипные вычислители (например, ЭВМ, содержащие сопроцессор для чисел с плавающей точкой и без такового).

При решении научно-технических задач в программах резко увеличивается удельный вес операций с плавающей точкой. Опять же для больших однопроцессорных машин в этом случае использовалась и продолжает использоваться характеристика быстродействия, выраженная в MFLOPS (Million Floating Point Operations Per Second — миллион операций с плавающей точкой в секунду). Для персональных ЭВМ этот показатель практически не применяется из-за особенностей решаемых на них задач и структурных характеристик ЭВМ.

Для более точных комплексных оценок существуют тестовые наборы, которые можно разделить на три группы:

- наборы тестов фирм-изготовителей для оценивания качества собственных изделий (например, компания Intel для своих микропроцессоров ввела показатель iCOMP-Intel Comparative Microprocessor Performance);

- стандартные универсальные тесты для ЭВМ, предназначенных для крупномасштабных вычислений (например, пакет математических задач Linpack, по которому ведется список ТОР 500, включающий 500 самых производительных компьютерных установок в мире);

- специализированные тесты для конкретных областей применения компьютеров (например, для тестирования ПК по критериям офисной группы приложений используется тест Winstone97-Business,для группы «домашних компьютеров» — WinBench97-CPUMark32, а для группы ПК для профессиональной работы — 3DWinBench97-UserScene).

Результаты оценивания ЭВМ по различным тестам несопоставимы. Наборы тестов и области применения компьютеров должны быть адекватны.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Она измеряется количеством структурных единиц информации, которые одновременно можно разместить в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Обычно отдельно характеризуют емкость оперативной памяти и емкость внешней памяти. Современные персональные ЭВМ могут иметь емкость оперативной памяти, равную 64 — 256 Мбайтам и даже больше. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.


Страница: