Суперкомпьютеры прошлое, настоящее, будущее
Рефераты >> Программирование и компьютеры >> Суперкомпьютеры прошлое, настоящее, будущее

В отличие от семейства CRAY X-MP, модели которого работают под управлением операционной системы COS (Cray Operating System), CRAY-2 комплектовалась новой операционной системой CX-COS, созданной фирмой Cray Research на базе Unix System V.

Во второй половине 80-х годов Control Data, "сошедшая с дистанции" после неудачи с моделью CYBER-205 вновь появляется на рынке сперЭВМ. Строго говоря, за разработку новой восьмипроцессорной суперЭВМ взялась ETA Systems - дочерняя фирма CDC, - однако в этом проекте был задействован практически весь потенциал Control Data. Вначале проект под названием ETA-10, получивший поддержку правительства через контракты и дотации потенциальным пользователям вызвал оживление среди специалистов по сверхскоростной обработке. Ведь новая суперЭВМ должна была достичь производительности в 10 GFLOPS, т.е. в пять раз превзойти CRAY-2 по скорости вычислений. Первый образец ETA-10 с одним процессором производительностью 750 MFLOPS был продемонстрирован в 1988 г., однако дальше дела пошли хуже. Во втором квартале 1989 г. Control Data объявила о свертывании деятельности компании ETA Systems из-за нерентабельности производства.

Не остался в стороне от проблем сверхвысокой производительности и гигант компьютерного мира - фирма IBM. Не желая уступать своих пользователей конкурентам из Cray Research, компания приступила к программе выпуска старших моделей семейства IBM 3090 со средствами векторной обработки (Vector Facility). Самая мощная модель этой серии - IBM 3090/VF-600S оснащена шестью векторными процессорами и оперативной памятью емкостью 512 Мбайт. В дальнейшем эта линия была продолжена такими машинами архитектуры ESA, как IBM ES/9000-700 VF и ES/9000-900 VF, производительность которых в максимальной конфигурации достигла 450 MFLOPS.

Еще одна известная в компьютерном мире фирма - Digital Equipment Corp. - в октябре 1989 г. анонсировала новую серию мэйнфреймов с векторными средствами обработки. Старшая модель VAX 9000/440 оснащена четырьмя векторными процессорами, повышающими производительность ЭВМ до 500 MFLOPS.

Высокая стоимость суперЭВМ и векторных мэйнфреймов оказалась не по карману достаточно широкому кругу заказчиков, потенциально готовых воспользоваться компьютерными технологиями параллельных вычислений. К их числу относятся мелкие и средние научные центры и университеты, а также производственные компании, которые нуждаются в высокопроизводительной, но сравнительно недорогой вычислительной технике.

С другой стороны, такие крупнейшие производители суперЭВМ, как Cray Research, Fujitsu, Hitachi и NEC, явно недооценили потребности "средних" пользователей, сосредоточившись на достижении рекордных показателей производительности и, к сожалению, еще более рекордной стоимости своих изделий. Весьма гибкой оказалась стратегия Control Data, которая после неудачи с CYBER-205 основное внимание уделила выпуску научных компьютеров среднего класса. На конец 1988 г. производство машин типа CYBER-932 вдвое превысило выпуск старших моделей серии CYBER-900 и суперЭВМ с маркой CDC. Основным конкурентом Control Data на рынке малогабаритных параллельных компьютеров, которые получили общее название "мини-суперЭВМ", стала будущий лидер в мире мини-суперкомпьютеров фирма Convex Computer. В своих разработках Convex первой реализовала векторную архитектуру с помощью сверхбольших интегральных схем (СБИС) по технологии КМОП. В результате пользователи получили серию относительно недорогих компьютеров по цене менее 1 млн. долл., обладающих производительностью от 20 до 80 MFLOPS. Спрос на эти машины превзошел все ожидания. Явно рискованные инвестиции в программу Convex обернулись быстрым и солидным доходом от ее реализации. История развития суперкомпьютеров однозначно показывает, что в этой сложнейшей области инвестирование высоких технологий, как правило, дает положительный результат - надо только, чтобы проект был адресован достаточно широкому кругу пользователей и не содержал слишком рискованных технических решений. Convex, которая, получив такое преимущество на старте, стала успешно развиваться. Сначала она выпустила на рынок семейство Convex C-3200, старшая модель которого C-3240 имеет производительность 200 MFLOPS, а затем - семейство Convex C-3800, состоящее из четырех базовых моделей в одно-, двух- , четырех- и восьмипроцессорной конфигурации. Самая мощная машина этой серии Convex C-3880 имеет производительность, достойную "настоящей" суперЭВМ 80-х годов, и при тестировании на пакете LINPACK обогнала по скорости вычислений такие системы, как IBM ES/9000-900 VF, ETA-10P и даже CRAY-1S. Отметим, что Cray Research, выпускает мини-суперЭВМ CRAY Y-EL, также реализованную на технологии КМОП-СБИС. Этот компьютер может поставляться в одно-, двух- или четырехпроцессорной конфигурации и обеспечивает производительность 133 MFLOPS на процессор. Объем оперативной памяти изменяется в зависимости от пожеланий заказчика в диапазоне 256-1024 Мбайт.

Доминирование векторных суперкомпьютеров в государственных программах и устойчивое положение "царя горы", занятое Cray Research, явно не устраивало сторонников MIMD-параллелизма. Первоначально в этот класс были включены многопроцессорные мэйнфреймы, а впоследствии к ним добавились суперЭВМ третьего поколения с мультипроцессорной структурой. И те и другие основаны на сформулированном фон Нейманом принципе управления вычислительным процессом по командам программы, или управления потоком команд (Instruction Flow). Однако примерно с середины 60-х годов математики стали обсуждать проблему разбиения задачи на большое число параллельных процессов, каждый из которых может обрабатываться независимо от других, а управление выполнением всей задачи осуществляется путем передачи данных от одного процесса к другому. Этот принцип, известный как управление потоком данных (Data Flow), в теории выглядит очень многообещающим. Теоретики DataFlow-параллелизма предполагали, что систему можно будет организовать из небольших и потому дешевых однотипных процессоров. Достижение сверхвысокой производительности целиком возлагалось на компилятор, осуществляющий распараллеливание вычислительного процесса, и ОС, координирующую функционирование процессоров. Внешняя простота принципа MIMD-параллелизма вызвала к жизни множество проектов.

Из наиболее известных разработок систем класса MIMD стоит упомянуть IBM RP3 (512 процессоров, 800 MFLOPS), Cedar (256 процессоров, 3,2 GFLOPS; компьютер одноименной фирмы), nCUBE/10 (1024 процессора, 500 MFLOPS) и FPS-T (4096 процессоров, 65 GFLOPS). К сожалению, ни один из этих проектов не завершился полным успехом и ни одна из упомянутых систем не показала объявленной производительности. Дело в том, что, как и в случае с матричными SIMD-суперкомпьютерами, слишком много технических и программных проблем было связано с организацией коммутатора, обеспечивающего обмен данными между процессорами. Кроме того, процессоры, составляющие MIMD- систему, оказались на практике не столь уж маленькими и дешевыми. Как следствие, наращивание их числа приводило к такому увеличению габаритов системы и удлинению межпроцессорных связей, что стало совершенно очевидно: при существовавшем в конце 80-х годов уровне элементной базы реализация MIMD-архитектуры не может привести к появлению систем, способных конкурировать с векторными суперкомпьютерами.


Страница: