Истиное солнечное времяРефераты >> Астрономия >> Истиное солнечное время
Для более точных отметок моментов времени во время наблюдений часы и хронометры снабжаются контактным приспособлением, замыкающим или размыкающим ток в цепи регистрирующего прибора. Эти приборы дают возможность отмечать (или сами записывают, фотографируют) показания часов и хронометров в моменты наблюдений тех или иных явлений с точностью гораздо большей, чем отметка моментов на слух.
Развитие радиотехники и электроники привело к созданию колебательных систем, стабильность которых, при определенных условиях, оказалась значительно выше, чем у механических маятниковых часов. Поэтому в настоящее время маятниковые часы используются только в тех случаях, когда достаточно знать время с небольшой точностью. В современных же службах времени для его хранения и распространения используют кварцевые часы, молекулярные и атомные стандарты частоты.
Во всех этих приборах измерение времени основано на точном счете числа колебаний, возникающих в системе прибора и происходящих с исключительным постоянством частоты,
Кварцевые часы представляют собой генератор переменного электрического напряжения, колебания которого задаются пьезоэлектрическими деформациями кристаллической кварцевой пластинки, происходящими в переменном электрическом поле. В зависимости от формы и величины кварца частота колебаний может достигать сотен кгц или десятков Мгц. Упругие деформации кварцевой пластинки подобно колебаниям маятника в обычных часах обеспечивают постоянство частоты кварцевого генератора с относительной стабильностью, достигающей l0-10-l0-11. Это означает, что частота, скажем, в 1 Мгц выдерживается с точностью 10-4-10-5 гц. С такой же относительной точностью при помощи кварцевых часов измерится какой-либо интервал времени. В итоге колебания суточного хода кварцевых часов (т.е. за 105 сек) составляют 10-5-10 -6 сек, что по крайней мере на два порядка выше точности маятниковых часов. Однако на больших интервалах времени ход кварцевых часов плавно изменяется за счет деформаций кристаллической структуры кварца, называемых его “старением”.
В атомных часах используется частота электромагнитных колебаний, возникающих при сопровождающихся излучением спектральных линий. Однако вследствие тепловых движении атомов обычные спектральные линии слишком широки, т.е. содержат излучение в заметном интервале частот. Поэтому их нельзя использовать в качестве точного эталона частоты. Для этой цели пригодны источники только очень узких спектральных линий, так же как, например, квантовые генераторы, излучающие запрещенные спектральные линии, возникающие при переходах с метастабильных уровней. В реально осуществленных атомных часах использовались мазеры,
работавшие на аммиаке и атомарном водороде, которые позволили получить
относительную стабильность частоты вплоть до 10-12-10-13.
Чтобы регистрировать моменты времени на практике, необходимо создать колебания с частотой значительно меньшей, чем у мазеров и даже кварцевых генераторов. Для этого кварцевые и атомные часы снабжают электронными делителями частоты, позволяющими на выходе получать импульсы различной длительности, вплоть до секундных, которые используются для приведения в движение секундной стрелки часов. Атомные часы могут также работать в паре с кварцевыми, регулярно подправляя частоту их колебания.
Возможен и другой принцип использования молекулярного генератора, когда для его возбуждения используется умноженная в соответствующее число раз частота кварцевого генератора. В этом случае квантовый генератор служит индикатором, контролирующим частоту колебаний кварца. Так работает наиболее распространенный в настоящее время эталон частоты - цезиевый стандарт, с точностью около 10 -12.
Заключение.
Из многолетних наблюдений установлено, что в тропическом году содержится 365,2422 средних солнечных суток. Нетрудно показать, что звездных суток в тропическом году на единицу больше, т.е. 366,2422.
Действительно, предположим, что в момент весеннего равноденствия некоторого года среднее экваториальное солнце и точка весеннего равноденствия находятся в верхней кульминации. Спустя одни звездные сутки точка весеннего равноденствия снова придет на небесный меридиан, а среднее экваториальное солнце не дойдет до него, так как за звездные сутки оно сместится по небесному экватору к востоку на дугу примерно в 1ё. Оно пройдет небесный меридиан после поворота небесной сферы на этот угол, на что потребуется около 4m времени, а точнее Зm56s.
Следовательно, средние сутки продолжительнее звездных суток на Зm56s.
Отходя каждые звездные сутки к востоку на дугу в 3m56s (или ~1ё), среднее экваториальное солнце на протяжении тропического года обойдет весь небесный экватор (подобно одному видимому обороту Солнца по эклиптике) и в момент следующего весеннего равноденствия снова придет в точку весеннего равноденствия.
Но в этот момент часовой угол среднего солнца и точки весеннего равноденствия будут отличаться от нуля, так как тропический год не содержит целого числа ни звездных, ни средних суток.
Нетрудно видеть, что, какова бы ни была продолжительность тропического года, число суточных оборотов Солнца за этот промежуток времени будет на единицу меньше, чем число суточных оборотов точки весеннего равноденствия.
Иными словами,
365,2422 средн. солн. суток = 366,2422 звездн. суток, откуда
И Коэффициент
служит для перевода промежутков среднего солнечного времени в промежутки звездного времени, а коэффициент - для перевода промежутков звездного времени в промежутки среднего солнечного времени. Таким образом, если промежуток времени в средних солнечных единицах
есть DTm, а в звездных единицах Ds, то Oтсюда, в частности, следует, что
24h средн. солн. вр.=24h03m56s,555звездн. вр.
1h" " "= 1 00 09 ,856 " "
1m" " "= 01 00 ,164 " "
1s" " "= 01 ,003 " "
24hзвездн. времени=23h 56m 04s,091средн. солн. вр.
1h" " = 59 50 ,170 " " "
1m" " = 59 ,836 " " "
1s" " = 0 ,997 " " "
Для облегчения вычислений на основании соотношений составляются подробные таблицы, по которым любой промежуток времени, выраженный в одних единицах, легко можно выразить в других единицах.
Для приближенных расчетов можно считать, что звездные сутки короче средних (или, наоборот, средние длиннее звездных) приблизительно на 4m, а один звездный час короче среднего (или средний длиннее звездного) - на 10s. Например, 5h среднего времени " 5h00m50s звездного времени, а 19h звездного времени "18h56m50s среднего времени.
Пусть звездное время в некоторый момент на данном меридиане равно s, а звездное время в ближайшую предшествующую среднюю полночь на этом же меридиане было S.
Значит, после полуночи прошло (s - S) часов, минут и секунд звездного времени.
Этот промежуток, если его выразить в единицах среднего солнечного времени, равен (s - S) К ' часам, минутам и секундам среднего времени. А так как в среднюю полночь среднее солнечное время равно 0h, то, следовательно, в момент s по звездному времени среднее солнечное время будет Тт = (s - S) К'.