Исследование движения центра масс межпланетных космических аппаратов
Рефераты >> Астрономия >> Исследование движения центра масс межпланетных космических аппаратов

где mл = 4,902´106 м3/c2- постоянная тяготения Луны.

rл - радиус-вектор от Земли до Луны.

Таким образом, возмущающее ускорение, возникающее из-за влияния Луны:

Так как rл>>r, то в первом слагаемом можно пренебречь r. Следо­ва­тельно

|rл - r| = Ö((xл-x)2+(yл-y)2+(zл-z)2)

где xл, yл, zл - проекции радиуса-вектора Луны на оси абсолютной системы координат.

Движение Луны учитывается следующим образом: положение Луны в каждый момент времени рассчитывается в соответствии с данными астрономического ежегодника. Все данные заносятся в массив, и далее этот массив считается программой моделирования движения КА. В первом приближении принимается:

- орбита Луны - круговая.

- угол наклона плоскости орбиты Луны к плоскости эклиптики i = 5,15°.

- период обращения линии пересечения плоскостей лунной ор­биты и эклиптики (по ходу часовой стрелки, если смотреть с север­ного полюса) = 18,6 года.

Угол между плоскостями экватора Земли и орбиты Луны можно найти по формуле

cos(hл) = cos(e)cos(i) - sin(e)sin(i)cos(Wл)

где Wл - долгота восходящего узла лунной орбиты, отсчитыва­ется от направления на точку весеннего равноденствия.

e - угол между плоскостями эклиптики и экватора Земли.

Величина hл колеблется с периодом 18,6 лет между минимумом при hл = e - i = 18°18’ и максимумом при hл = e + i = 28°36’ при W = 0.

Долгота восходящего узла лунной орбиты Wл изменяется с тече­нием времени t на величину Wл = t´360/18,6´365,2422´24´3600.

Положение Луны на орбите во время t определяется углом

J л = t´360/27,32´24´3600.

По формулам перехода найдем проекции вектора положения Луны на оси абсолютной системы координат:

xл = rл(cosJлcosWл - coshлsinJлsinWл)

yл = rл(cosJлsinWл + coshлsinJлcosWл)

zл = rлsinhлsinJл

rл = 3,844´108 м - среднее расстояние от Земли до Луны

Таким образом, проекции возмущающего ускорения на оси абсо­лютной системы координат:

axл = - mлx/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

ayл = - mлy/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

azл = - mлz/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

Уравнения возмущенного движения при действии корректирую­щего ускорения имеют вид:

или

d2x/dt2 = - (mz/r2)x + axu + axa + axc + axл + axк

d2y/dt2 = - (mz/r2)y + ayu + aya + ayc + ayл + ayк

d2z/dt2 = - (mz/r2)z + azu + aza + azc + azл + azк

2.4.3. РАСЧЕТ ПАРАМЕТРОВ ТЕКУЩЕЙ ОРБИТЫ КА

Полученная система уравнений движения ЦМ КА интегрируется методом Рунге-Кутта 5-го порядка с переменным шагом. Началь­ные условия x0, y0, z0, Vx0, Vy0, Vz0 - в абсолютной системе коорди­нат, соответствуют началь­ной точке вывода при учете ошибок вы­ведения. После интегриро­вания мы получаем вектор состояния КА (x, y, z, Vx, Vy, Vz) в любой момент вре­мени.

По вектору состояния можно рассчитать параметры орбиты. со­ответствующие этому вектору состояния.

а) Фокальный параметр - р.

р = C2/mz, где С - интеграл площадей.

C = r ´ V, |C| = C = Ö(Cx2+Cy2+Cz2)

Cx = yVz - zVy

Cy = zVx - xVz - проекции на оси абсолютной СК

Cz = xVy - yVx

б) Эксцентриситет - е.

e = f/mz, где f - вектор Лапласа

f = V ´ C - mzr/r, |f| = f = Ö(fx2+fy2+fz2)

fx = VyCz - VzCy - mzx/r

fy = VzCx - VxCz - mzy/r - проекции на оси абсолютной СК

fz = VxCy - VyCx - mzz/r

в) Большая полуось орбиты.

a = p/(1 - e2)

г) Наклонение орбиты - i.

Cx = Csin(i)sinW

Cy = - Csin(i)cosW

Cz = Ccos(i)

можно найти наклонение i = arccos(Cz/C)

д) Долгота восходящего узла - W.

Из предыдущей системы можно найти

sinW = Cx/Csin(i)

cosW = - Cy/Csin(i)

Так как наклонение орбиты изменяется несильно в районе i = 97,6°, мы имеем право делить на sin(i).

Если sinW => 0, W = arccos (-Cy/Csin(i))

Если sinW < 0, W = 360 - arccos (-Cy/Csin(i))

е) Аргумент перицентра - w.

fx = f(coswcosW - sinwsinWcos(i))

fy = f(coswsinW + sinwcosWcos(i))

fz = fsinwsin(i)

Отсюда найдем

cosw = fxcosW/f + fysinW/f

sinw = fz/fsin(i)

Если sinw > 0, w = arccos (fxcosW/f + fysinW/f)

Если sinw < 0, w = 360 - arccos (fxcosW/f + fysinW/f)

ж) Период обращения - Т.

T = 2pÖ(a3/mz)

Графики изменения элементов орбиты при действии всех, рас­смотренных выше, возмущающих ускорений в течение 2-х перио­дов (Т = 5765 с) приведены на рис. 1-12.

Графики изменения во времени возмущающих ускорений приве­дены на рис. 13-18.

2.5. ПРОВЕДЕНИЕ КОРРЕКЦИИ ТРАЕКТОРИИ МКА

Существующие ограничения на точки старта РН и зоны падения отработавших ступеней РН, а также ошибки выведения не позво­ляют сразу же после пуска реализовать рабочую орбиту. Кроме того, эволюция параметров орбит под действием возмущающих ус­корений в процессе полета МКА приводит к отклонению парамет­ров орбиты КА от требуемых значений. Для компенсации воздей­ст­вия указанных факторов осуществляется коррекция орбиты с по­мощью корректирующей двигательной установки (КДУ), которая располагается на борту МКА.

В данной работе проведена разработка алгоритма коррекции, моделирование процесса коррекции и расчет топлива, необходи­мого для проведения коррекции.

Из-за различных причин возникновения отклонений элементов орбиты проводится:

- коррекция приведения - ликвидация ошибок выведения и при­ве­дение фактической орбиты к номинальной с заданной точно­стью.

- коррекция поддержания - ликвидация отклонений параметров орбиты от номинальных, возникающих из-за действия возмущаю­щих ускорений в процессе полета.

Для того, чтобы орбита отвечала заданным требованиям, откло­нения параметров задаются следующим образом:

- максимальное отклонение наклонения орбиты Di = 0,1°

- предельное суточное смещение КА по долготе Dl = 0,1°

Следовательно, максимальное отклонение периода орбиты DT = 1,6 сек.

Алгоритм коррекции следующий:

1) Коррекция приведения.

2) Коррекция поддержания.

2.5.1. КОРРЕКЦИЯ ПРИВЕДЕНИЯ

После окончания процесса выведения МКА, проводятся внешне-траекторные измерения (ВТИ). Эти измерения обеспечивают, по баллистическим расчетам, знание вектора состояния с требуемой точностью через 2 суток. После этого начинается коррекция приве­дения.

Предложена следующая схема проведения коррекции:

а) Коррекция периода.

б) Коррекция наклонения.

Корректирующий импульс прикладывается в апсидальных точ­ках, либо на линии узлов в течение 20 сек и происходит исправле­ние одного параметра орбиты. Таким образом используется одно­пара­метрическая, непрерывная коррекция.

а) Коррекция периода.

Осуществляется в два этапа:

- коррекция перицентра

- коррекция апоцентра

Сначала осуществляется коррекция перицентра - приведение те­кущего расстояния до перицентра rp к номинальному радиусу rн = 6952137 м. По­сле измерения вектора состояния рассчитываются параметры ор­биты. Далее определяется нужный корректирующий импульс DVк. На­правление импульса (тормозящий или разгоняю­щий) зависит от взаимного расположения перицентра орбиты и радиуса номиналь­ной орбиты. Для этого вычисляется Drp = rp - rн.


Страница: