Законы Кеплера
Рефераты >> Астрономия >> Законы Кеплера

Законы Кеплера

Важную роль в формировании представления о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированного позднее Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную формулу планетных орбит, а также закономерность изменения скорости движения планет при их движении вокруг Солнца.

M­1

В своих поисках Кеплер исходил из убеждения, что «миром правит число», высказанного ещё Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, - размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с законами музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т. д.

g

a­­1  

T­1

Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающей положение планеты на небесной сфере, к системе координат, указывающих её положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге.

T­2

S

g

a­­2

Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, показанный на рис.1.

Рис. 1. Построение

орбиты Марса Кеплером

Пусть, нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты - его прямое восхождение a­1­, которое выражается углом gТ­1­М­1­, где Т­1­- положение Земли на орбите в этот момент, а М­1­-

положение Марса. Очевидно, что спустя 687 суток (таков звёздный период обращения Марса) планета придёт в ту же точку орбиты. Если определить прямое восхождение планеты на эту дату, то, как видно из рис.1, можно указать положение планеты в пространстве, точнее, в плоскости её орбиты. Земля в этот момент находится в точке Т­2­, и, следовательно, угол gТ­2­М­2­ есть не что иное, как прямое восхождение Марса - a­2­. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил ещё целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты.

Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом

радиус-вектор планеты за равные промежутки времени описывает равные площади.

Впоследствии эта закономерность получила название второго закона Кеплера.

Рис.2.Первый закон Кеплера.  

B

A

B­1

C­1

C


Страница: