Двойные звезды
Рефераты >> Астрономия >> Двойные звезды

Спектрально-двойные звезды В спектрах некоторых звезд наблюдается периодическое раздвоение или колебаниеположения спектральных линий. Если эти звезды являются затменными переменными,то колебания линий происходят с тем же периодом, что и изменение блеска. При этом в моменты соединений, когда обе звезды движутся перпендикулярно к лучу зрения, отклонение спектральных линий от среднего положения равно нулю. В остальные моменты времени на­блюдается раздвоение спектральных линий, общих для спектров обеих звезд. Наибольшей величины раздвоение линий достигает при наибольшей лучевой скорости ком­понентов, одного - в направлении к наблюдателю, а другого - от него. Если наблюдаемый спектр принадлежит только одной звезде (а спектр второй не виден из-за ее слабости), то вместо раздвоений линий наблюдается их смещение то в красную, то в синюю часть спектра. Зависимость от времени лучевой скорости, определенной по смещениям линий, называется кривойлучевых скоростей. Таким образом, комбинацию этих двух параметров, или оба их в отдельности, можно определить, если известна кривая лучевых скоростей. Звезды, двойственность которых может быть установлена только на основании спектральных наблюдений, называются спектрально-двойными. В отличие от затменных переменных звезд, у которых плоскости их орбит составляют весьма малый угол с лучом зрения (i " 90ё), спектрально-двойные звезды могут наблюдаться и в тех случаях, когда этот угол много больше, т.е. когда i сильно отличается от 90ё. И только если плоскость орбиты близка к картинной плоскости, движение звезд не вызывает заметного смещения линий, и тогда двойственность звезды обнаружена быть не может.Если плоскость орбиты проходит через луч зрения (i = 90ё), то наибольшее смещение спектральных линий позволяет определить значение полной скорости V движения звезд относительно центра масс системы в двух диаметрально противоположных точках орбиты. Эти значения являются экстремумами кривой лучевых скоростей. Поскольку долгота периастра w и эксцентриситет известны на основании вида кривой лучевых скоростей, тем самым на основании теории эллиптического движения удается определить все элементы орбиты. Если же i ¹ 90ё, то получаемые из наблюдений значения лучевых скоростей равны Vr = V sin i. Поэтому, хотя спектроскопически могут быть найдены абсолютные значения линейных параметров орбиты (выраженных в километрах), все они содержат неопределенный множитель sin i, который нельзя определить из спектроскопических наблюдений.Из сказанного ясно, что в тех случаях, когда кривая лучевых скоростей известна для затменно-переменной звезды (для которой можно определить i), получаются наиболее полные и надежные элементы орбиты и характеристики звезд. При этом все линейные величины определяются в километрах. Удается найти не только размеры и формы звезд, но даже и их массы. В настоящее время известно около 2500 звезд, двойственная природа которых установлена только на основании спектральных наблюдений. Примерно для 750 из них удалось получить кривые лучевых скоростей, позволяющие найти периоды обращения и форму орбиты.Изучение спектрально-двойных звезд особенно важно, так как оно позволяет получить представление о массах удаленных. объектов большой светимости и, следовательно, достаточно массивных звезд. Тесные двойные системы представляют собою такие пары звезд, расстояние между которыми сопоставимо с их размерами, При этом существенную роль начинают играть приливные взаимодействия между компонентами. Под действием приливных сил поверхности обеих звезд перестают быть сферическими, звезды приобретают эллипсоидальную форму и у них возникают направленные друг к другу приливные горбы, подобно лунным приливам в океане Земли. Форма, которую принимает тело, состоящее из газа, определяется поверхностью,проходящей через точки с одинаковыми значениями гравитационного потенциала. Эти поверхности называются эквипотенциальными. Газ может свободно течь вдольэквипотенциальной поверхности, что и определяет равновесную форму тела. Для одиночной невращающейся звезды эквипотенциальные поверхности, очевидно, концентрические сферы с центром, совпадающим с центром масс. Это объясняет сферичность обычных звезд. Для тесной двойной системы эквипотенциальные поверхности имеют сложную форму и образуют несколько семейств кривых. Характер их легко представить, если внимательно посмотреть на сечение критических поверхностей, разделяющих эти семейства (см. рис. 206). Самая внутренняя из них восьмеркой охватывает обе звезды и проходит через первую (внутреннюю) точку

Визуально-двойные звезды Двойные звезды, двойственность которых обнаруживается при непосредственных наблюдениях в телескоп, называются визуально-двойными. Видимую орбиту звезды-спутника относительно главной звезды находят по длительным рядам наблюдений, выполненным в различные эпохи. С точностью до ошибок наблюдений эти орбиты всегда оказываются эллипсами (рис. 203). В некоторых случаях на основании сложного собственного движения одиночной звезды относительно звезд фона можно судить о наличии у нее спутника, который невидим либо из-за близости к главной звезде, либо из-за своей значительно меньшей светимости (темный спутник). Именно таким путем были открыты первые белые карлики - спутники Сириуса и Проциона, впоследствии обнаруженные визуально. Видимая орбита визуально-двойной звезды является проекцией истинной орбиты на картинную плоскость. Поэтому для определения всех элементов орбиты прежде всего необходимо знать угол наклонения . Этот угол можно найти, если видны обе звезды. Его определение основано на том, что в проекции на плоскость, перпендикулярную лучу зрения, главная звезда оказывается не в фокусе эллипса видимой орбиты, а в какой-то другой его внутренней точке. Положение этой точки однозначно определено углом наклонения i и долготой периастра w. Таким образом, определение элементов i и w, а также эксцентриситета е является чистогеометрической задачей. Элементы Р, Т и р получаются непосредственно из наблюдений. Наконец, истинное значение большой полуоси орбиты а и видимое а’ связаны очевидным соотношением а' = a cos i.(11.24) Из наблюдений а' и, следовательно, а получаются в угловой мере. Только знаяпараллакс звезды, можно найти значение большой полуоси в астрономическихединицах (а.е.). В настоящее время зарегистрировано свыше 60 000 визуально-двойных систем.Примерно у 2000 из них удалось обнаружить орбитальные движения с периодами отнаименьшего 2,62 года у e Ceti до многих десятков тысяч лет. Однако надежныеорбиты вычислены примерно для 500 объектов с периодами, но превышающими 500 лет.

Фотометрические двойные звезды Фотометрические двойные звезды представляют собой очень тесные пары, обращающиеся с периодом от нескольких часов до нескольких дней по орбитам, радиус которых сравним с размерами самих звезд. Плоскости орбит этих звезд и луч зрения наблюдателя практически совмещаются. Эти звезды обнаруживаются явлениями затмений, когда одна из компонент проходит впереди или сзади другой относительно наблюдателя. Астроном замечает это явление как падение яркости наблюдаемой звезды, которое происходит регулярно с поразительной точностью. Таким образом, фотометрические двойные звезды являются затменно-переменными звездами, интенсивно наблюдаемыми астрономами наряду с другими переменными звездами. В результате наблюдений определяют кривую блеска переменной звезды, отражающую изменение яркости звезды со временем, то есть зависимость вида m(t). Типичным представителем затменно-переменных звезд является звезда 2-й величины $\beta$Персея (Алголь), которая регулярно затмевается на 9 часов с периодом 2,86731 суток; падение блеска в минимуме у этой звезды составляет 2,3 звездной величины. К настоящему времени известно более 500 фотометрических двойных звезд.


Страница: