Роль текстовых задач в развитии логического мышления младших школьников
Рефераты >> Педагогика >> Роль текстовых задач в развитии логического мышления младших школьников

Ф. Энгельс отмечает, что «…мышление состоит столько же в разложении предметов сознания на их элементы, сколько в объединении связанных друг с другом элементов в некоторое единство. Без анализа нет синтеза».

Анализ и синтез, взаимно связанные операции мышления, находят постоянное применение, как при изучении элементов арифметической теории, так и при решении примеров и задач.

Уже на первых шагах обучения при изучении чисел первого десятка учащиеся пользуются наглядно-действенным анализом (разложением) предметных множеств на составляющие их элементы и наглядно-действенным синтезом (соединением), группируя элементы во множества.

Наглядный анализ и синтез сменяется затем анализом и синтезом по представлению: ребёнок может выполнить разложение чисел или их соединение, оперируя со зрительными образами, которые сохраняются в его памяти и могут быть воспроизведены в его сознании.

Более высокой ступенью является умственный анализ и синтез, выполняемый мысленно при помощи внутренней речи.

При обучении любому разделу математики приходится опираться на анализ и синтез.

Анализ и синтез, как взаимосвязанные мыслительные операции находят своё применение при решении текстовых задач.

Ученик под руководством учителя, прежде всего, анализирует содержание задачи, расчленяя его на числовые данные, условия и вопрос.

При решении составных арифметических задач требуется применить более сложный и более тонкий анализ и синтез. Анализ содержания составной задачи, так же как и простой, сводится к расчленению его на числовые данные, условия и вопрос. Однако сами данные, условие и искомое должны подвергнутся дополнительно анализу, расчленению на составляющие их элементы.

В процессе начального обучения математике находит своё применение приём сравнения, т.е. выделение сходных и различных признаков у рассматриваемых чисел, арифметических примеров, арифметических задач.

После решения задач учащиеся сравнивают, каким действием решается та или другая задача: одна сложением, другая умножением, а затем сопоставляют способы решения с различиями в условиях задач. Такое сопоставление помогает учащимся лучше осознать смысл выражений «больше на несколько единиц» и «больше в несколько раз» и прочнее установить связь между условием каждой задачи и способом её решения.

Сравнение основано на анализе и синтезе: необходимо расчленить каждую задачу на составляющие её элементы, а затем мысленно соединить сходные элементы, выделив при этом существенные различия.

При объяснении учащимся новой для них по способам решения задачи с многозначными числами часто используется приём аналогии: учитель предлагает решить аналогичную задачу с небольшими числами, вычисления над которыми можно выполнить устно.

Используя в начальном обучении математике различные методы, учитель применяет их так, чтобы они содействовали активизации мышления учащихся и тем самым способствовали его развитию.


Страница: