Лекции по аэродинамике и динамике полета
Рефераты >> Авиация и космонавтика >> Лекции по аэродинамике и динамике полета

1.4. Безвихревое и вихревое движение

Движение сплошной среды в некоторой области называется безвихревым, если в ней = 0, и вихревым, если ¹ 0 хотя бы в части этой области, называемой вихрем.

Из определения (1.6) следует, что вихревое движение характеризуется наличием вращения каждой частицы. Этот факт иллюстрируется рис. 1, на котором крайние точки бесконечно малой частицы среды имеют разные скорости в силу наличия ненулевой величины . Если центр этой частицы покоится, а все другие частные производные скорости равны нулю, то очевидно, что ¹ 0 характеризует именно вращение бесконечно малой частицы среды. В безвихревом движении такого вращения нет и каждая частица среды совершает лишь поступательное движение. Вообще говоря, вихревое движение возникает в реальной природе, благодаря наличию границ (свободной поверхности, твердых стенок или твердых тел), а также явлению вязкости.

Примерами безвихревого движения могут служить:

состояние покоя среды,

поступательное движение,

источник и сток (когда частицы среды выходят из точки или входят в нее строго по лучам),

движение среды вокруг некоторого кругового цилиндра по концентрическим окружностям со скоростью, обратно пропорциональной расстоянию от оси цилиндра.

Примерами вихревого движения могут служить:

плоский сдвиг (когда скорость частиц вдоль некоторой плоскости пропорциональна расстоянию от этой плоскости),

вращение среды вокруг некоторой оси, как твердого тела (в отличие от потенциального движения аналогичной геометрии в этом случае скорость с удалением от оси линейно возрастает!).

2. ДИНАМИКА СПЛОШНОЙ СРЕДЫ

2.1. Силы и моменты в механике сплошной среды

Силы, распределенные по объему W, называются объемнымиили массовыми. Они обозначаются и относятся к элементу массы Dm = rDW. Т.е. сила, действующая на элемент массы, равна Dm = rDW, следовательно, размерность совпадает с размерностью ускорения. Примерами массовых сил могут служить гравитационные, электромагнитные, инерционные.

Силы, распределенные по поверхности S, называются поверхностными. Поверхностные силы будем обозначать вектором и относить к элементу поверхности DS сплошной среды. Т.е. имеет размерность давления. Такие силы возникают, например, на свободной поверхности среды, при взаимодействии среды с твердыми телами, а также внутри среды (внутренние поверхностные силы).

Внутренние поверхностные силы необходимо рассматривать при изучении движения отдельных частиц среды с учетом их механического влияния друг на друга. Так, например, происходит при относительном движении двух соседних соприкасающихся частиц. Это явление может наблюдаться в любом месте сплошной среды, причем для бесконечно малых частиц поверхности соприкосновения dS можно построить любым образом. Тогда и , зависящее от такого выбора, можно определить по-разному в зависимости от dS, т.е. ориентации нормали этой площадки, поэтому такое взаимодействие обозначим вектором S. В силу третьего закона Ньютона на одну из пары соприкасающихся частиц действует сила SdS, на другую –SdS. Однако если соприкосновения нет, т.е. если движение имеет разрыв каких-то своих характеристик, то последнее условие может нарушаться.

 

Вектор S в общем случае не перпендикулярен к dS, поэтому различают нормальную составляющую pSn, называемую нормальным напряжениемили нормальным давлением, и тангенциальную pSt, называемую касательным напряжениемили внутренним трением: SdS= pSndS + pSttdS.

Свойство вектора S рассмотрим с помощью представления бесконечно малой частицы в виде тетраэдра с ребрами, параллельными осям координат (рис. 2). Площади граней такого тетраэдра равны S, S×cos(,x), S×cos(,y), S×cos(,z).

Массовые силы будем считать постоянными во всем объеме W = hS/3 бесконечно малой частицы, а поверхностные силы 1, 2, 3, S постоянными на своих гранях. Это позволит применить к частице начало Даламбера из теоретической механики:

откуда, сократив на S, и перейдя к пределу при h ® 0, получаем инвариантное к выбору площадки равенство:

. (2.1)

Это означает, что существует некоторый объект P, компонентами

которого можно рассматривать векторы, или даже элементы матрицы (pij) – матрицы из компонент векторов. Объект P с компонентами pij называется тензором внутренних напряжений.


Страница: