Использование логических задач на уроках математики в начальной школе
Рефераты >> Педагогика >> Использование логических задач на уроках математики в начальной школе

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь операторных структур детского мышления и общематематических и общелогических структур, хотя "механизм" этой связи далеко не ясен и почти не исследован. Наличие этой связи открывает принципиальные возможности для построения учебного предмета, развертывающегося по схеме "от простых структур - к их сложным сочетаниям". И значительное место в таком построении должно принадлежать широкому применению в процессе обучения младших школьников нестандартных логических задач.

Глава II. Методика использования логических задач на уроках математики в начальной школе

2.1 Интегрированное обучение и развитие мышления в простой игре

Общее соображение о важности широкого внедрения в школьный урок математики нестандартных логических задач дополним описанием соответствующих методических установок. Ниже рассмотрим методику использования на уроках математики в начальной школе специального типа логических задач, связанных с внедрением в сознание ребенка основных понятий математической логики. Эта методика была разработана ведущим отечественным методистом А.А. Столяром.

"Главная задача обучения математике, причем с самого начала, с первого класса, - учить рассуждать, учить мыслить", - писал А.А. Столяр ([9], c. 11). Для достижения наилучших результатов в освоении учащимися основ логического мышления и в изучении геометрических фигур А.А. Столяр использовал в своей практике игру с кругами, рассмотрение которой произведено ниже.

Игра с кругами, созданная на основе известных кругов Эйлера, позволяет обучать классифицирующей деятельности, закладывает понимание логических операций: отрицания - не, конъюнкции - и, дизъюнкции - или. Перечисленные логические операции имеют важнейшее значение, так как различные их комбинации образуют всевозможные и сколь угодно сложные логические структуры. Из функциональных элементов, реализующих логические операции не, и, или, конструируются схемы современных ЭВМ.

К концу дошкольного возраста у ребенка проявляются признаки логического мышления. В своих рассуждениях он начинает использовать логические операции и на их основе строить умозаключения. Очень важно в этот период научить ребенка логически мыслить и обосновывать свои суждения.

Для игры с кругами нужны нарисованные на бумаге один, два или три пересекающихся круга разного цвета, разноцветные обручи и наборы геометрических фигур разных цветов и размеров, карточки с числами и буквами русского алфавита. В принципе необязательно использовать круги, можно работать с любыми замкнутыми плоскими фигурами. В этом случае замкнутые области выделяются на монтажной панели, к примеру, цветными веревочками. Возможна также работа на компьютере со специальной компьютерной программой. Комплексное обучение, сочетающее игры с обручами со всем классом, игру за столом в группе и индивидуальную работу за компьютером, является наиболее эффективным.

Приведем несколько примеров заданий для игры "Круги". Предлагаемая методика игрового обучения взята из работы ([9]). Она может использоваться начиная с первого класса.

1. Задачи с одним кругом

Цель работы над задачами с одним кругом - учить классифицировать предметы по одному признаку, понимать и применять логическую операцию отрицания не.

Игра проводится со всем классом или группой. У учеников в руках наборы квадратов, кругов и треугольников разных цветов и размеров. В центре игровой площадки помещен обруч или на доске нарисован круг.

Учитель:

- Покажите треугольные фигуры.

- Покажите красные фигуры.

- Прыгните и приземлитесь (поставьте мелом точку) внутри круга.

- Прыгните и приземлитесь (поставьте мелом точку) вне круга.

Ученики выборочно выполняют эти простые задания. Надо быть готовым к тому, что здесь необязательно сразу будут правильные результаты. Понятия "внутри" и "вне" у многих детей в этом возрасте еще не полностью сформированы.

Учитель:

- Положите внутрь круга треугольные фигуры.

Ученики случайным образом (например, с закрытыми глазами) выбирают по одной геометрической фигуре из своего набора и по очереди помещают их на заданное место. Все дети наблюдают за действиями одноклассников, а в случае ошибки поднимают руку и говорят: "Стоп". Ошибка обсуждается со всей группой.

После того как все фигуры размещены, учитель задает два новых вопроса.

Учитель:

- Какие геометрические фигуры лежат внутри круга?

Ученик:

- Внутри круга лежат треугольные фигуры.

Этот ответ содержится в самом условии только что решенной задачи и формулируется обычно без особого труда. Правильного ответа на второй вопрос приходится ждать дольше.

Учитель:

- Какие геометрические фигуры лежат вне круга?

Правильный ответ ученика:

- Вне круга лежат нетреугольные фигуры.

Возможные неправильные ответы:

- вне круга лежат большие фигуры (но и внутри круга могут лежать большие фигуры);

- вне круга лежат красные фигуры (но и внутри круга могут лежать красные фигуры);

- вне круга лежат квадраты (не описывает все фигуры, лежащие вне круга).

Ответ:

- вне круга лежат квадраты и круги - является правильным, но наша цель в данном случае - охарактеризовать свойство фигур, лежащих вне круга, через свойство фигур внутри круга.

Возможно, потребуется уточнение к условию задачи:

- Выразите свойство всех фигур, лежащих вне круга, одним словом.

Очень трудно бывает учителю удержаться от произнесения правильного ответа самому. На уроке, проводимом А.А. Столяром, мы удивились, как он умел ждать правильного ответа от детей. Если мы хотим заниматься развитием логики у детей, а не добиваться механического запоминания, то спешить нельзя.

В дальнейшем в игру вносятся варианты вопросов различной степени трудности. В частности, можно задавать вопросы на подсчет количества фигур с определенным признаком.

Эту игру нужно провести в простом варианте 3-5 раз перед переходом к игре с двумя кругами, но возвращаться к ней с более сложными заданиями следует неоднократно.

Примеры заданий.

При выполнении каждого из этих заданий очень важно не только правильно разложить фигуры или карточки, но и правильно ответить на вопросы:

- Какие геометрические фигуры (буквы, числа .) лежат внутри круга?

- Какие геометрические фигуры (буквы, числа .) лежат вне круга?

1. В круг положите все красные фигуры.

Вне круга лежат некрасные фигуры.

2. В круг положите все круглые фигуры.

Вне круга лежат некруглые фигуры.

3. В круг положите все некруглые фигуры.

Скорее всего ученики сразу дадут правильный ответ: "Вне круга лежат круглые фигуры". Однако возможен и ответ: "Вне круга лежат НЕ НЕкруглые фигуры". Эта задача помогает ввести и обсудить понятие двойного отрицания.

Игру с кругами можно использовать и для изучения свойств чисел, букв, звуков. Вот несколько таких примеров.


Страница: