Научно-техническое прогнозирование
В ряде случаев непосредственному долгосрочному планированию научно-технического развития предшествует логическое моделирование комплексного образа будущей научно-технической политики, включающее в себя: сформулированные экономические, политические и другие цели данного государства, описание ряда научных и технических возможностей их достижения, характеристику ресурсов и потребностей, обусловливающих целесообразность принятия тех или иных государственных решений. Такой описательный документ в научной прогностике называется сценарием будущего. Обычно он составляется на основе обобщения данных предварительно выполненного качественного и количественного анализа: общественных потребностей в развитии данной проблемной области; ее сложившихся внутренних возможностей и противоречий развития; "фона" научно-технической проблематики, определяющего внешние воздействия, стимулирующие и тормозящие развитие прогнозируемой области науки и техники.
Особую форму приобретают такого рода феноменологические модели, как сценарии будущего, в случае прогнозов в области теоретических и фундаментальных исследований.
В начале 70-х годов специалисты А.И. Покровский и Б.А. Старостин сформулировали важную для методологии прогнозирования такого рода объектов концепцию фундаментального научного эффекта (ФЭ) и недостающего для его получения базиса знаний. Эта концепция исходит из того, что предметом исследования в прогностике является не само будущее открытие как таковое, а фундаментальный научный эффект, понимаемый как системная целостность данных, которая может с некоторой вероятностью привести к сдвигам в научных представлениях значительного теоретического и потенциального прикладного масштаба.
Конечно, и само открытие может стать для ряда дальнейших открытий фундаментальным научным эффектом или важнейшим компонентом такового. В этом плане следует рассматривать, например, отношение между Периодическим законом Менделеева (1869) и предсказанными на его основе химическими элементами или между открытием электромагнитных волн Герцем (1889) и развитием радиотехники с ее разнообразными применениями, включая радиолокацию и т. д.
Совокупность целей, средств и предпосылок для разрешения тех или иных научных проблем может быть представлена и более строго интерпретированной моделью – прогнозным графом. Каждый полученный элемент модели (событие) состоит: из описания (на языке соответствующего классификатора); системы количественных оценок данного события (условная вероятность, время свершения, значимость, стоимость); определителей причинно-следственных связей данного события с событиями верхнего и нижнего по отношению к нему уровней. Из такого рода элементов строится модель научно-технического прогресса, представляющая собой ориентированный граф.
Модель описанного вида реализована в практике прогнозных работ Института кибернетики. Она позволяет следить за ходом научно-технического развития конкретной проблемной области, анализировать тенденции и оценивать совокупности задач (ситуации), синтезировать прогнозные варианты тех или иных изменений в ситуациях и оценивать следствия этих изменений. Математическое обеспечение модели базируется на вычислительных процедурах и алгоритмах "метода максимальных возможностей".
Специфически важная роль во всей излагаемой концепции прогнозирования принадлежит методам информационного моделирования. Характерные свойства массовых потоков научно-технической информации предопределяют ряд возможностей анализа тенденций прогресса науки и техники по "информационным сигналам" – по изменению количественных и структурных параметров этих потоков.
Известны попытки разработать методы анализа информационных сигналов, содержащихся в потоках выданных патентных документов о мировом техническом опыте. Закодировав информацию, содержащуюся в патентах по определенному классу технических средств, можно определить те элементы и типы технических решений, по которым ускорение прироста новых данных существенно отлично от средних значений. Это явление предложено рассматривать как сигнал о том, что через 5-8 лет такого рода решения будут обновлять соответствующие характеристики практически применяемых средств техники.
В дальнейшем предстоит проверить прогнозное значение инженерно-технических выводов, вытекающих из подобного анализа патентных данных. Процедура классификации содержания патентов и оценки прироста данных нуждается в совершенствовании с учетом существующих принципиальных различий в национальных системах патентования и в побудительных мотивах к патентованию новых идей, а также влияния на этот процесс конъюнктуры мирового рынка.
Интересные идеи пришли в область информационных методов анализа развития науки в связи с появившейся возможностью автоматизированного составления индексов связей (ИНС) между различными научными публикациями.
Подобным образом составляются ежегодно издаваемые перекрестные библиографические указатели информации по важнейшим разделам науки. Однако, как это нередко бывает в науке, очень скоро выяснились и другие его возможности, специфически важные для науковедения. ИНС оказался мощным и перспективным инструментом анализа тенденций развития науки, диагноза состояния междисциплинарных связей и прогнозирования ряда явлений в жизнедеятельности организма науки. Исходная предпосылка этих ценных для науковедения свойств ИНС содержится в том факте, что сеть фактического взаимовлияния, построенная по данным ИНС, является информационным отображением – моделью историко-логической сети связей реального процесса развития науки.
Используя хорошо известные сейчас математические методы, можно производить анализ информационных сетей любой сложности, получая объективные данные о фактическом взаимовлиянии, тенденциях в перераспределении усилий исследователей, интенсивности и направленности миграции научной информации из одних областей исследований во многие другие и т. п.
В типичных для нашего времени условиях широкого фронта научно-исследовательских работ, колоссальных объемов информации и все возрастающего значения взаимодействия наук даже хорошо информированному и компетентному исследователю трудно оперативно уследить за изменениями в тактике решения научной проблемы, происходящими в разных странах. Изменения в структуре потоков информации – их чувствительный индикатор. На основе анализа этих изменений можно прогнозировать предстоящие потребности в возникновении новых специализированных научных учреждений, необходимость в существующих и новых журналах, назревающее обособление новых относительно самостоятельных научных направлений. Структура, интенсивность и направленность сетей фактического взаимовлияния позволяют также прогнозировать ожидаемые в отдельных областях крупные научные сдвиги, а иногда дают материал для объяснения причин низкой результативности тех или иных направлений.
В последние годы внимание науковедов привлекают возможности использования для анализа опыта развития науки методов исследования операций. Применительно к задачам программных и организационных прогнозов подобный подход начинает складываться в попытки создания экономико-математических моделей выбора вариантов развития и целесообразного распределения ресурсов, что весьма актуально с точки зрения последующего использования прогнозных данных.