Научные, преднаучные и вненаучные формы знания
Рефераты >> Философия >> Научные, преднаучные и вненаучные формы знания

Сходные мысли высказывал один из создателей квантовой механики французский физик Луи де Бройль. «Великие открытия, - писал он даже сделанные исследователями, которые не имели в виду никакого практического применения и занимались исключительно теоретическим решением проблем, быстро находили затем себе применение в технической области. Конечно, Планк, когда он впервые написал формулу, носящую теперь его имя, совсем не думал об осветительной технике. Но он не сомневался, что затраченные им огромные усилия мысли позволят нам понять и предвидеть большое количество явлений, которые быстро и во все возрастающем количестве будут использованы осветительной техникой. Нечто аналогичное произошло и со мной. Я был крайне удивлен, когда увидел, что разработанные мной представления очень быстро находят конкретные приложения в технике дифракции электронов и электронной микроскопии» (см. [8], стр. 223).

Нацеленность науки на изучение не только объектов, преобразуемых в сегодняшней практике, но и тех объектов, которые могут стать предметом массового практического освоения в будущем, является второй отличительной чертой научного познания. Эта черта позволяет разграничить научное и обыденное, стихийно-эмпирическое познание и вывести ряд конкретных определений, характеризующих природу науки. Она позволяет понять, почему теоретическое исследование выступает определяющей характеристикой развитой науки.

Однако современное научное познание в своем мощном развитии уже не представляет то единое целое, что дает, по крайней мере, однозначные ответы на поставленные вопросы. Так, различные научные теории могут давать результаты, противоречащие друг другу, - например, квантовая и классическая механики. Далее, «благодаря» теореме Геделя о неполноте, в математике также не может существовать однозначности результатов, - все зависит от выбора начальных аксиом, которые приходится выбирать, опираясь только на опыт. Возьмем в качестве примера аксиому Евквида о том, что существует только одна прямая, проходящая через данную точку и параллельная данной прямой. Известно, что ее отрицание одного типа (существует более одной параллельной прямой) приводит к непротиворечивой геометрии Лобачевского, а другого типа (не существует ни одной прямой, паралельной данной, яркий пример – сфера, где любые прямые – «паралелли», самые большие окружности сферы, всегда пересекаются между, причем в двух точках, - «полюсах») – также к непротиворечивой геометрии Римана. Все три геометрии имеют право на жизнь, но тогда получается дилемма: какая из них более соответствует действительности, какая более важна к применению на практике, какая из них наиболее богата интересными свойствами, красивыми теоремами, более «доказуема», и т.д., - выбор лежит на порой на конкретном исследователе, его авторитете (возможно), т.е., в конечном итоге, на опыте. «Мы видим, что и в физике, и в математике, и даже в логике интуитивные суждения, принимающие во внимание опыт, играют фундаментальную роль» - пишет в своей статье Фейнберг Е.Л. (см. [3], стр.35). В отличие от культурного релятивизма подобный когнитивный релятивизм зависит от «парадигмальной зависимости критериев рациональности. … Такими же несравнимыми становятся и последовательно сменяющие друг друга теоретические парадигмы» (см. статью Мамчур Е.А, [2], стр. 239). Неужели нет выхода и релятивизм неизбежен? Многие – и отечественные, и зарубежные исследователи – полагают, что преодоление релятивизма возможно лишь в процессе выхода за пределы познания, в сферу материально-практической деятельности людей, т.е. – в сферу практики (см. там же, [2], стр. 242).

3. Преднаучная форма познания.

В истории формирования развития науки можно выделить две стадии, которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности. Первая стадия характеризует зарождающуюся науку (преднауку), вторая – науку в собственном смысле слова. Зарождающаяся наука изучает преимущественно те вещи и способы их изменения, с которыми человек многократно сталкивался в производстве и обыденном опыте. Он стремился построить модели таких изменений с тем, чтобы предвидеть результаты практического действия. Первой и необходимой предпосылкой для этого было изучение вещей, их свойств и отношений, выделенных самой практикой. Эти вещи, свойства и отношения фиксировались в познании в форме идеальных объектов, которыми мышление начинало оперировать как специфическими предметами, замещающими объекты реального мира. Эта деятельность мышления формировалась на основе практики и представляла собой идеализированную схему практических преобразований материальных предметов. Соединяя идеальные объекты с соответствующими операциями их преобразования, ранняя наука строила таким путем схему тех изменений предметов, которые

могли быть осуществлены в производстве данной эпохи. Так, например, анализируя древнеегипетские таблицы сложения и вычитания целых чисел, нетрудно установить, что представленные в них знания образуют в своем содержании типичную схему практических преобразований, осуществляемых над предметными совокупностями.

В таблицах сложения каждый из реальных предметов (это могут быть животные, собираемые в стадо, камни, складываемые для постройки, и т.д.) замещался идеальным объектом «единица», который фиксировался знаком I (вертикальная черта). Набор предметов изображался здесь как система единиц (для «десятков», «сотен», «тысяч» и т.д. в египетской арифметике существовали свои знаки, фиксирующие соответствующие идеальные объекты). Оперирование с предметами, объединяемыми в совокупность (сложение), и отделение от совокупности предметов или их групп (вычитание) изображались в правилах действия над «единицами», «десятками», «сотнями» и т.д. Прибавление, допустим, к пяти единицам трех единиц производилось следующим образом: изображался знак III (число «три»), затем под ним писалось еще пять вертикальных черточек IIIII (число «пять»), а затем все эти черточки переносились в одну строку, расположенную под двумя первыми. В результате получалось восемь черточек, обозначающих соответствующее число. Эти операции воспроизводили процедуры образования совокупностей предметов в реальной практике (реальное практическое образование и расчленение предметных совокупностей было основано на процедуре добавления одних единичных предметов к другим).

Используя такого типа знания, можно было предвидеть результаты преобразования предметов, характерные для различных практических ситуаций, связанных с объединением предметов в некоторую совокупность.

Такую же связь с практикой можно обнаружить в первых знаниях, относящихся к геометрии. Геометрия (греч. «гео» - земля, «метрия» - измерение) в самом первичном смысле термина обнаруживает связь с практикой измерения земельных участков. Древние греки заимствовали первичные геометрические знания у древних египтян и вавилонян. Земледельческая цивилизация Древнего Египта основывалась на возделывании плодородных земель в долине Нила. Участки земли, которыми владели различные сельские общины, имели свои границы. При разливах Нила эти границы заносились речным илом. Их восстановление было важной задачей, которую решали особые государственные чиновники. Очертания участков и их размеры изображались в чертежах на папирусе. Такие чертежи были моделями земельных участков, и по ним восстанавливались их границы.


Страница: