Специфика пространственно-временной организации географических систем
При всем разнообразии уровней строения геосистем все они обладают некоторыми общими свойствами, которые выделяют их среди множества других систем объективной действительности (физических, биологических, социальных и др.) и определяют их “географичность”. Первое свойство всякой геосистемы — ее целостность. Систему нельзя свести к сумме ее частей — компонентов. Из взаимодействия компонентов возникает нечто качественно новое, например, способность продуцировать биомассу. “Продуктом” геосистемы, т.е. результатом ее функционирования как единого сложного механизма, служит почва — новый компонент, который не мог бы образоваться от механического сложения воды, материнской породы и органической массы, — именно целостность геосистемы порождает почву.
Целостность геосистемы проявляется в ее относительной автономности и устойчивости к внешним воздействиям, в наличии естественных границ, упорядоченности структуры. Геосистема, конечно, не изолирована от внешней среды, ее пронизывают потоки энергии и вещества, поступающие извне. Но внутренние связи геосистемы более тесные, чем внешние. В ней происходят непрерывный обмен и превращение энергии и вещества. Всю совокупность процессов перемещения и трансформации энергии и вещества в геосистеме можно назвать ее функционированием. Оно слагается из поглощения и трансформации солнечной энергии, влагооборота, геохимического круговорота, биологического метаболизма и механического перемещения вещества под действием силы тяжести.
Структура геосистемы определяется как ее пространственно-временная организация или упорядоченность взаимного расположения и соединения отдельных частей. В геосистемах различают структуру вертикальную (или радиальную) и горизонтальную (или латеральную).
Первая выражается в ярусном, т.е. упорядоченном в соответствии с законом всемирного тяготения, расположении компонентов, которые связаны вертикальной же системой вещественно-энергетических потоков. Примерами вертикальных системообразующих потоков могут служить выпадение атмосферных осадков, их фильтрация в почву и грунтовые воды, поднятие водных растворов по капиллярам почвы и материнской породы и по сосудам растений, испарение с почвы, транспирация.
Под горизонтальной структурой геосистемы подразумевают упорядоченное расположение геосистем низших рангов внутри системы более высокого ранга, например урочищ в пределах ландшафта, как это показано на рисунке 1. В данном случае упорядоченное расположение локальных геосистем (урочищ) определяется рельефом. Рельеф же направляет и основные латеральные потоки: водный (склоновый) сток, а вместе с ним — перенос твердых частиц и вещества в растворенном виде, стекание холодного воздуха по склонам.
Помимо пространственной упорядоченности геосистемам присуща и временная упорядоченность структурных частей. Достаточно вспомнить о снежном покрове — это специфически временной компонент, который регулярно появляется и исчезает во многих геосистемах в холодное время года. Зеленая масса растений, напротив, появляется и “работает” (т.е. участвует в функционировании) в геосистемах высоких и умеренных широт лишь в теплое время года. Таким образом, всякой геосистеме свойственен закономерный набор состояний, ритмически сменяющихся в годичном цикле. Один год — это характерное время геосистемы, или время ее выявления.
Отсюда мы подходим к понятию динамика геосистемы. Под динамикой имеются в виду такие изменения геосистемы, которые имеют обратимый характер и не приводят к перестройке ее структуры. Это прежде всего циклическая смена состояний (сезонных, суточных), а кроме того, восстановительные смены, возникающие после нарушения геосистемы внешними факторами, в том числе и хозяйственным воздействием (например, вырубкой леса, распашкой). Динамические изменения свидетельствуют о способности геосистемы возвращаться к исходному состоянию (пока действие внешних возмущающих факторов не перешло некоторого критического порога), т.е. ее устойчивости. Устойчивость и изменчивость — два важных качества геосистемы, находящиеся в диалектическом единстве.
От динамики следует отличать эволюционные изменения, или развитие геосистем. Развитие — направленные (необратимые) изменения, приводящие к коренной перестройке структуры, т.е. к появлению новой геосистемы (например, вследствие глобальных изменений климата, интенсивных тектонических движений и ряда других причин). Эволюционные изменения присущи всем геосистемам. Перестройка локальных геосистем может происходить на глазах человека, о чем свидетельствуют такие процессы, как зарастание озер, заболачивание лесов, возникновение оврагов. Время трансформации систем регионального уровня измеряется геологическими масштабами (по меньшей мере, тысячелетиями и даже миллионами лет). Перестройка всей географической оболочки, естественно, требует наиболее длительных сроков.
РАЗДЕЛ 2. ОСОБЕННОСТИ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ ОРГАНИЗАЦИИ ГЕОСИСТЕМ
2.1. Геосистема высшего ранга: географическая оболочка (эпигеосфера)[5]
Географическая оболочка впервые была определена П. И. Броуновым еще в 1910 г. как “наружная оболочка Земли”[6]. Это наиболее сложная часть нашей планеты, где соприкасаются и взаимопроникают атмосфера, гидросфера и литосфера. Только здесь возможно одновременное и устойчивое существование вещества в твердом, жидком и газообразном состояниях. В этой оболочке происходит поглощение, превращение и накопление лучистой энергии Солнца; только в ее пределах стало возможным возникновение и распространение жизни, которая, в свою очередь, явилась мощным фактором дальнейшего преобразования и усложнения эпигеосферы. Наконец, внутри этой оболочки появился человек, для которого она стала географической средой — средой обитания и преобразовательной хозяйственной деятельности.
Эпигеосфера не имеет резких границ, она открыта воздействиям как из Космоса, таки из глубинных толщ планеты, в которые постепенно и переходит. Верхние пределы эпигеосферы обычно проводят по тропопаузе — пограничному слою между тропосферой и стратосферой, лежащему в среднем на высоте 10—12 км от уровня Океана. Ниже этой границы свойства воздушной оболочки в значительной мере определяются влиянием подстилающей поверхности суши и Океана, откуда поступают тепло и влага, а также твердые частицы и живое вещество (бактерии, споры и пыльца растений и др.).
Более спорны нижние границы эпигеосферы, во всяком случае, они лежат не глубже 3—5 км, куда еще проникают газы атмосферы, вода в жидком состоянии (правда, в виде очень горячих и сильно минерализованных растворов) и некоторые бактерии. Гидросфера полностью входит в географическую оболочку — вплоть до самых больших глубин (11 км), где обнаружены живые существа (бактерии).
Целостность эпигеосферы определяется взаимообусловленностью ее компонентов, непрерывным вещественно-энергетическим обменом между ними, который по своей интенсивности значительно превосходит обмен между эпигеосферой в целом, с одной стороны, и открытым Космосом и глубинными толщами планеты — с другой.