Структура научного знания
Рефераты >> Философия >> Структура научного знания

Однако более внимательный анализ показывает, что этим описание данной

области науки не исчерпывается. Оказывается, что существеннейшую роль в квантовой механике играет истолкование ее аппарата с точки зрения определенных представлений о реальности и процессе ее познания.

Всем известна колоссальная по широте и глубине обсуждаемых проблем дискуссия, которая развернулась вокруг проблем квантовой механики между двумя направлениями, виднейшими представителями которых были Эйнштейн и Бор. Ее суть состояла в том, как соотнести аппарат квантовой механики с окружающим нас миром.

Из всего комплекса обсуждавшихся проблем рассмотрим лишь одну связанную с истолкованием пси-функции. Эта функция входит в основное уравнение квантовой механики — уравнение Шрёдингера, которое описывает поведение микрообъектов. Оказывается, что пси-функция дает лишь вероятностные предсказания, и поэтому остро встает вопрос о том, какова сущность этой вероятности.

- Эйнштейн считал, что вероятностный характер предсказаний в квантовой механике обусловлен тем, что квантовая механика неполна.

Сама действительность полностью детерминистична, в ней все определено, все принципиально — вплоть до деталей — предсказуемо, а квантовая механика опирается на неполную информацию о действительности, поэтому она дает вероятностные предсказания.

Представим себе, что мы подбрасываем монету и она упала на орла. Мы говорим, что вероятность выпадения монеты на орла равняется 1/2. Каковы основания для этого вероятностного суждения? Поведение монеты объективно вероятностно, или мы просто не полностью знаем все детали того процесса, которые приводят к этому результату?

В классической физике эту ситуацию обычно рассматривают таким образом: поскольку все в мире однозначно предопределено, то, если бы мы точно учли все детали: распределение массы монеты, точку приложения силы, величину импульса, с какими молекулами воздуха и как будет взаимодействовать монета при движении и т.д., мы могли бы высказать аподиктическое, а не вероятностное суждение о том, как упадет монета.

Таким образом, с этой точки зрения в природе отсутствуют вероятностные процессы, а наши вероятностные суждения связаны с тем, что мы не имеем полной информации о действительности.

Эйнштейн полагал, что так же обстоит дело и с квантовомеханическими явлениями. Следует обратить внимание на то, что истолкование Эйнштейном аппарата квантовой механики базируется:

n во-первых, на определенных представлениях о действительности. согласно которым в мире все однозначно детерминировано,

n во-вторых, на представлениях о характере научной теории: теория, в которой есть вероятность, неполна, но неполные теории имеют право на существование.

n Бор предложил другой вариант истолкования этой же ситуации.

Он утверждал, что квантовая механика полна и отражает принципиально неустранимую вероятность, характерную для нашего постижения микромира.

Эта точка зрения совершенно противоположна точке зрения Эйнштейна и в плане представлений о мире и в плане представлений о Гносеологическом статусе вероятностной теории.

Очевидно, что, вычленяя в структуре локального научного знания только два уровня — эмпирический и теоретический, - невозможно истолковать научную теорию как знание.

С этих позиций ее в лучшем случае можно истолковать лишь как аппарат описания и предсказания эмпирических данных. Однако такая позиция никогда не устраивала ученых.

Ученые никогда на этом не останавливаются, стремясь истолковать науку не только как описание непосредственно наблюдаемых явлений, но и как отражение объективной реальности, которая лежит за явлениями, за наблюдаемым. В рассмотренном случае и у Эйнштейна и у Бора отчетливо видна эта тенденция, выразившаяся в построении определенных интерпретаций квантовой механики с позиций различных философских представлений.

Обратим внимание на то, что в науку теория может войти в таком виде, в каком она не представляет собой знания в полном смысле этого слова. Она уже функционирует как определенный организм, уже описывает эмпирическую действительность, но в знание в полном смысле она превращается лишь тогда, когда все ее понятия ползают онтологическую и гносеологическую интерпретацию.

Итак, в науке существует уровень философских предпосылок. Ясно, что в зависимости от того, с какой наукой и какой теорией мы имеем дело, философские основания выявляют себя в большей или меньшей степени. В квантовой механике они очевидны. Здесь до сих пор идут острейшие споры по проблемам интерпретации ее математического аппарата и по сей день отсутствует позиция, которая примирила бы спорящие стороны. Аналогичные примеры можно легко обнаружить и в других науках.

Сколько бурных философских дискуссий вызвали учение об эволюции живой природы или генетика!

А какими интеллектуальными баталиями сопровождалось освоение идей структурализма в лингвистике, литературоведении и искусствоведении!

Что представляют собой математические объекты, можно ли всю математику построить на основе теории множеств, возможно ли доказательство непротиворечивости математики, как объяснить невероятную приложимость математических построений к областям реальности, которые совершенно не похожи на мир непосредственно доступный нашему восприятию? Обсуждение такого рода вопросов привлекало и привлекает внимание многих математиков и философов.

Вместе с тем, как свидетельствуют факты, в науке существует немало теорий, которые не вызывают каких-либо споров но поводу их философских оснований.

Это связано с тем. что они базируются на философских представлениях, близких к общепринятым, и поэтому не подвергаются рефлексии: они не выступают предметом специальною анализа. а воспринимаются как нечто само собой разумеющееся.

Обратим внимание теперь на то, что и эмпирическое знание находится в зависимости от определенных философских представлений. В самом деле, рассмотрим эмпирический уровень науки.

Очевидно, что в любом наблюдении или эксперименте ученый исходит из того, что реальные объекты и явления, с которыми он сталкивается, причинно обусловлены. Мы в данном случае отвлекаемся от природы причинно-следственных связей, которые могут быть весьма сложны, как, например, в микромире, рассматривая эмпирические знания, с которыми имеет дело большинство наук.

n В этом случае ученый всегда исходит из того, что все hmcci свою причину. Если, например, результат эксперимента нс повторяется, он ищет причину этою неповторения.

n Как известно, результаты эксперимента требуют обязательной статистической обработки. Без этого они не могут быть научными и не могут быть опубликованы. Это требование вытекает из представлений о том. какую роль в экспериментальных результатах играют ошибки измерения.

n Далее статья с результатами эмпирических исследований публикуется спустя некоторое время после проведения эксперимента. Здесь очевидно предположение, что эксперимент имеет значимость не только в данный момент времени, что те закономерности, которые фиксируются на эмпирическом уровне, устойчивы, неизменны, если, конечно, речь не идет о какой-либо особой ситуации, например о быстроменяющейся социальной области, где эта динамика специально учитывается.


Страница: