Законы развития техники
Эти законы должны быть близкими к законам и закономерностям, известным в биологии, физике, т.е. законы техники должны формулироваться на уровне законов природы.
Существуют законы, формулируемые как на качественном, так и на количественном уровнях. С помощью «качественных» законов выражают основные тенденции процесса. «Количественные» законы отражают количественные связи и поэтому поддаются формализации.
Хотел бы подчеркнуть, что хотя законы техники должны объяснить многие явления и процессы, относящиеся к технике в целом и к отдельным техническим объектам, однако главная функция их - быть явно полезными при решении задач анализа существующих технических объектов (ТО), прогнозирования и развития определенного ТО и др.
Хотел бы также сказать, что законы техники представляют собой ядро или главную составляющую часть новой науки - технознания, которая будет играть в инженерном образовании такую же роль, какую играет курс биологии в подготовке врачей, агрономов. зоотехников и т. и. Нужно ли говорить, что темпы прогресса техники в существенной мере будут зависеть от состояния теоретических и прикладных исследований по законам техники и технознания.
Научно-техническая революция ускорила естественный (вроде бы) процесс дифференциации наук, за который приходится расплачиваться по крупному счету - потерей цельного, системного представления о современной технике и ее взаимодействии с окружающим миром. Велением времени (простите за высокопарный стиль) является устранение этой негативной ситуации, когда многие специалисты в буквальном смысле «не ведают, что творят» в смысле последствий их инженерной деятельности.
Выводы
Среди проблем, обсуждавшихся на многолетнем общегородском московском семинаре но философско-методологическим проблемам технических наук, выделили некоторые вопросы, тезисы. положения:
1. Соотношение и взаимосвязь общенаучных методов познания (законов развития науки) и общего специфического метода технических наук (законов развития техники).
2. Есть ли и какова связь между законами развития науки и законами развития техники?
3. НТР характеризуется интеграцией фундаментальных и прикладных исследований. Отсюда необходимость разработки концептуального аппарата взаимодействия технических наук в общей системе «наука».
4. Технические науки выделились в самостоятельную область знания. Отсюда необходимость изучения мировоззренческих, социальных, философско-методологических проблем.
5. Характер (суть) техники определяется законами развития природы, но техника приводит к существенным изменениям многих свойств природных объектов. Возникают естественно-технические законы, конкретизирующие и дополняющие естественно-научные понятия, законы применительно к техносфере.
Приведем любопытный штрих, иллюстрирующий принципиальные отличительные черты и возможности законов развития техники в сравнении с естественными законами (законами природы). В природе, как правило, происходит процесс не накопления, а рассеивания энергии (диссипация), выравнивания потенциалов. В тех более редких случаях, когда энергия накапливается, происходит внезапная (взрывная) разрядка (бури. молнии, землетрясения и т. д.). Но те и другие процессы неуправляемые (человечество пока не научилось это делать).
Во многих же технических проблемах (технологиях, конструкциях, передвижениях и т. д.) человек управляет процессом. И знание законов развития техники играет здесь важнейшую роль (конечно в сочетании с естественными законами).
В предисловии к сборнику обобщающему пятилетнюю работу московского семинара, отмечается «слабая разработка философско-методологических проблем технических наук», что эти проблемы «требуют дальнейшего изучения и пропаганды, практической оценки и развития на занятиях методологических семинаров, научно-практических конференциях и симпозиумах».
Московские товарищи пришли независимо к одному и тому же выводу: «Творческое содружество представителей технических наук и философии будет способствовать более полному и глубокому решению этих проблем». Аналогичное мнение у Е-П. Балашова. Он отмечает, что процесс сближения общественных и технических наук, к сожалению, идет медленнее, чем этого требует современное общество. Представители общественных наук в своей деятельности часто ограничиваются набором иллюстраций из области прикладных наук. Практически отсутствуют конструктивные философские исследования по закономерностям развития систем различного функционального назначения, по методологии научного и технического творчества.
Законы и закономерности развития антропогенных систем.
Рассмотрим позиции представителей технических наук, занимающимися исследованием законов и закономерностей, по которым развивается техника.
Позиция Альтшуллера Г.С.
Альтшуллер Г.С. сформулировал три условия принципиальной жизнеспособности технических систем:
1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технических систем является наличие и минимальная работоспособность основных частей системы. Полной техническая система является в том случае, ели она имеет все необходимое для выполнения своих функций без участия человека.
2. Закон «энергетической проводимости системы». Необходимым условием принципиальной жизнеспособности технических систем является проход энергии по всем ее частям.
3. Закон согласования ритмики системы. Необходимым условием принципиальной жизнеспособности технических систем является согласования ритмики (частоты, колебаний периодичности) всех частей системы.
Развитие технических систем идет в направлении увеличении степени идеальности систем.
Техническую систему можно считать идеальной, если она не имеет веса и размеров, не затрачивает энергии, работает без потерь времени и полностью выполняет свои функции.
Существование технической системы не самоцель. Система нужна только для выполнения какой-то функции (или нескольких функций). Система идеальна, если ее нет, а функция осуществляется.
Развитие частей технической системы идет неравномерно. Чем сложнее система, тем неравномернее идет развитие ее частей. Это свойство называется законом неравномерности развития частей системы.
Исчерпав возможности своего развития, система включается в надсистему (закон перехода в надсистему) в качестве одной из ее частей: при этом дальнейшее ее развитие идет на уровне надсистемы.
Переход в надсистему моджет осуществляться по трем основным путям:
1) создание надсистем из однородных (одинаковых) элементов (например, объединение электростанций в единое энергетическое кольцо др.).
2) создание надсистем из конкурирующих (альтернативных) систем (например, парусно-паровые корабли и др.).
3) создание надсистем из антагонистических систем (например, кондиционер, как объединения холодильника с нагревателем и т.д.).
Антагонистические системы воспроизводят в своей структуре предысторию своего развития.