Самоорганизация и саморазвитие
Самый популярный и наглядный пример образования структур нарастающей сложности — хорошо изученное в гидродинамике явление, названное ячейками Бенара. При подогреве жидкости, находящейся в сосуде круглой или прямоугольной формы, между нижним и верхним ее слоями возникает некоторая разность (градиент) температур. Если градиент мал, то перенос тепла происходит на микроскопическом уровне и никакого макроскопического движения не происходит. Однако при достижении градиентом некоторого критического значения в жидкости внезапно (скачком) возникает макроскопическое движение, образующее четко выраженные структуры в виде цилиндрических ячеек. Сверху такая макроупорядоченность выглядит как устойчивая ячеистая, структура, похожая на пчелиные соты.
Это хорошо знакомое всем явление с позиций статистической механики невероятно. Ведь оно свидетельствует, что в момент образования ячеек Бенара миллиарды молекул жидкости, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывали в хаотическом движении. Создается впечатление, будто каждая молекула "знает", что делают все остальные, и желает двигаться, в общем строю. (Слово "синергетика", кстати, как раз и означает "совместное действие"). Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь если бы, даже случайно, такая "правильная" и устойчиво "кооперативная" структура образовалась, что почти невероятно, она тут же бы и распалась. Но она не распадается. При соответствующих условиях (приток энергии извне), а, наоборот, устойчиво сохраняется. Значит, возникновение структур нарастающей сложности — не случайность, а закономерность.
Поиск аналогичных процессов самоорганизации в других классах открытых неравновёсных систем вроде бы обещает быть успешным: механизм действия лазера; рост кристаллов; химические часы (реакция Белоусова—Жаботинского); формирование живого организма; динамика популяций; рыночная экономика, наконец, в которой хаотичные действия миллионов свободных индивидов приводят к образованию устойчивых и сложных макроструктур. Все это примеры самоорганизации систем самой разной природы.
Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями.
· Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность).
· Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а, скорее, исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции.
· Развитие осуществляется через случайный выбор одной из нескольких разрешенный возможностей дальнейшей эволюции в точке бифуркации. Следовательно, случайность — не досадное недоразумение; она встроена в механизм эволюции. А нынешний путь эволюции системы, возможно, не лучше, чем те, которые были отвергнуты случайным выбором.
Литература
1. Алексеев П.В. Панин А.В. Философия: учебник для вузов. –М: ТЕИС, 1996 .
2. Гусев М.В. От антропоцентризма к биоцентризму//Вестник МГУ, серия 7: Философия. - 1994.- №6.
3. Концепция самоорганизации: становление нового образа научного мышления. -М.: Наука, 1994 .
4. Моисеевых. Человек и ноосфера. -М: Прогресс, 1990 .
5. Рузавин Г.И. Концепция современного естествознания. Учебник для вузов. - М. Культура и спорт, ЮНИТИ, 1997 .
6. Самоогранизация в науке: опыт философского осмысления, -М: Арго. ИФ РАН, 1994 .
7. Степин В.С. Философская антропология и философские науки. -М.: Высшая школа, 1992 .
8. Седов Е.Х. Эволюция и информация. -М., 1972.