Философские аспекты моделирования как метода познания
1.3.2. Моделирование и проблема истины.
Интересен вопрос о том, какую роль играет само моделирование, в процессе доказательства истинности и поисков истинного знания. Что же следует понимать под истинностью модели? Если истинность вообще - "соотношение наших знаний объективной действительности"(11 с178), то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными. Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров. Так планетарная модель атома Резерфорда оказалась истинной в рамках исследования электронной структуры атома, а модель Дж. Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, неложны, просто существуют. В модели реализованы двоякого рода знания:
1. знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта;
2. теоретические знания, посредством которых модель была построена.
Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета. Таким образом, можно говорить о том, истинность присуща материальным моделям:
¨ в силу связи их с определенными знаниями;
¨ в силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления;
¨ в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.
"И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения"(11 с180).
Модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели. Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории.
Теперь, когда были рассмотрены основные теоретические аспекты моделей и моделирования, можно перейти к рассмотрению конкретных примеров широкого применения моделирования, как средства познания в различных областях человеческой деятельности.
2. Применение моделирования в различных отраслях человеческого знания и деятельности
2.1. Моделирование в биологии
Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом. В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента, то они будут в основном следующими: (10 с15)
¨ эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);
¨ вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);
¨ некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;
¨ большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально - этическим соображениям.
Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов (1,4,10), в целом ряде преимуществ:
1. С помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования;
2. В процессе построения модели можно сделать различные дополнения к исследуемой гипотезе и получить ее упрощение;
3. В случае сложных математических моделей можно применять ЭВМ;
4. открывается возможность проведения модельных экспериментов (синтез аминокислот по Миллеру) (10 с152).
Все это ясно показывает, что моделирование выполняет в биологии самостоятельные функции и становится все более необходимой ступенью в процессе создания теории. Однако моделирование сохраняет свое эвристическое значение только тогда, когда учитываются границы применения всякой модели. Особенно выразительно это показано P.С. Карпинской (7 с54) на модели минимальной клетки. Эта модель возникла как результат познания биохимической универсальности жизни и имеет методологическое значение для моделирования основных ее закономерностей. Минимальная клетка представляет собой модель основной единицы жизни и охватывает лишь мембранную, репродукционную системы и систему снабжения энергией. Таким образом, задача состоит в том, чтобы с ее помощью воспроизвести наиболее общие жизненные структуры. И хотя при этом остается неучтенным аспект развития, модель минимальной клетки имеет огромное значение для доказательства единства органического мира. Однако эта модель не выходит за границы биохимического подхода к жизни, который преимущественно "направлен на доказательство ее стабильных, универсальных и неизменных характеристик" (10 с51). С другой стороны, модель минимальной клетки может быть использована и для разграничения определенных качественных ступеней процесса развития. Она, – как и любая другая модель, имеет свою область применимости и позволяет распознавать и реконструировать определенные закономерности. Тем самым эта модель выполняет существенные функции в процессе разработки теории.
Для более глубокого понимания значения и сущности моделирования в биологии следует остановиться на проблемах моделирования в истории биологической науки. Моделирование как научный метод в биологии было впервые описано и сознательно использовано Отто Бючии и Стефаном Лед уком в 1892 году (10 с146). С точки зрения истории науки интересно, что методы моделирования в биологии стали применяться сознательно лишь тогда, когда благодаря появлению эволюционной теории Дарвина и созданию генетики в развитии биологической теории был сделан крупный скачок, и биология преступила к исследованию все более сложных биотических связей. Так, например, возникновение популяционной генетики тесно связано с моделью Харди и Вейнберга. Все изменения, происходящие в естественных популяциях, имеют очень сложную природу из-за взаимодействия многих факторов эволюции, так что только исследование более простых моделей может дать представление о значении отдельных эволюционных факторов. Существенную роль моделирование играло и играет в развитии молекулярной биологии. Одним из известных примеров применения методов моделирования является разработка структурной модели ДНК, которую создали на основе рентгеноструктурного анализа и химических исследований Уотсон и Крик (1953г.). Эта модель особенно выразительно показывает взаимосвязь между экспериментальными методами и методами моделирования при дальнейшем развитии биологической теории. Вопросы, связанные с дальнейшим применением моделирования в молекулярной биологии широко рассматриваются в работе немецкого исследователя Э. Томаса (12).