Распознавание в биологических и технических системах
Рефераты >> Психология >> Распознавание в биологических и технических системах

Новая научная дисциплина получила название “Распознавание образов”.

Таким образом, базой для решения задач отнесения объектов к тому или иному классу послужили, как это отмечается сегодня, результаты классической теории статистических решений. В ее рамках строились алгоритмы , обеспечивающие на основе экспериментальных измерений параметров (признаков), характеризующих этот объект, а также некоторых априорных данных, описывающих классы, определение конкретного класса, к которому может быть отнесен распознаваемый объект.

В последующем математический аппарат теории распознавания расширился за счет применения:

-разделов прикладной математики;

-теории информации;

-методов алгебры логики;

-математического программирования и системотехники.

(Системотехника - научное направление, охватывающее проектирование, создание, испытания и эксплуатацию сложных систем).

К середине 70-х годов определился облик распознавания как самостоятельного научного направления, появилась возможность создания нормальной математической теории распознавания. В этом нам придется убедиться, а также приобрести необходимые навыки, прослушав курс “Основы построения систем распознавания образов”.

Первая отечественная работа в области распознавания образов - работа основоположника современной теории информации Харкевича Александра Александровича - “Опознавание образов” .”Радиотехника” т.14,15. 1959 г.

Наши отечественные ученые, внесшие существенный вклад в эту дисциплину:

В.М.Глушков, В.С.Михалевич, В.С.Пугачев, НП.Бусленко, Ю.И.Журавлев, Я.З.Цыпкин, А.Г.Ивахненко, М.А.Айзерман, Э.М.Браверман, М.М.Бонгард, В.Н.Вапник, Г.П.Тартаковский, В.Г.Репин, Л.А.Растригин, А.Л.Горелик и др.

Зарубежные ученые:

1-й Ф.Розенблатт - 1957г , Персепторон - простейшая модель мозга, решающая задачи распознавания.

Р.Гонсалес, У.Гренандер, Р.Дуда, Г.Себестиан, Дж.Ту, К.Фу, П.Харт.

1.2

Терминология и отличительные особенности систем распознавания

1.2.1. Основные определения

В силу чисто исторических причин класс задач распознавания связан с понятием “образа”. В свое время не обратили внимания, что в заимствованном из англоязычных работ термине “pattern recognition” термин “pattern”, кроме значения “образ”, имеет еще значение “модель”, стиль”, “режим”, “закономерность”, “образ действия”. В современном распознавании и особенно искусственном интеллекте его употребляют в самом широком смысле, имея в виду, что “образ” - это некоторое структурированное приближенное (обратите внимание - “приближенное”!) описание (эскиз) изучаемого объекта, явления или процесса.

То есть, частичная определенность описания является принципиальным свойством образа.

Основное назначение описаний (образов) - это их использование в процессе установления соответствия объектов, то есть при доказательстве их идентичности, аналогичности, подобия, сходства и т.п., которое осуществляется путем сравнения (сопоставления). Два образа считаются подобными, если удается установить их соответствие. Можно, в частности, считать, что имеет место соответствие, если достигнута их идентичность.

Сопоставление образов представляет собой основную задачу распознавания и играет существенную роль в информатике в целом. Эта задача возникает, в частности, в различных разделах искусственного интеллекта, например в понимании естественного языка компьютером, символьной обработке алгебраических выражений, экспертных системах, преобразовании и синтезе программ ЭВМ.

Теперь отметим следующий важный момент, что в различных задачах образу придается различный смысл. Это определяется часто тем, какие характеристики объекта входят в описание образа, какой аппарат используется для представления этих характеристик. Именно отсюда и можно понять, почему образ является приближенным описанием объекта. Чем большее число свойств и качеств объекта отражено на принятом языке в образе рассматриваемого объекта, тем полнее это описание, тем полнее этот образ характеризует описываемый объект. Однако в любом случае мы имеем дело с описанием, а не с самим объектом, который всегда богаче описания. Итак, любой образ представляется некоторым набором признаков. Поэтому вполне допустимо наряду с выражением “распознавание образов” применять выражение “отождествление некоторых наборов описаний объектов”.

* * *

Достаточно наглядно и теоретически и практически понимается различие между объектом и образом, если рассмотреть различия между картиной (художественное полотно), являющейся плоским объектом, и таким ее изображением как фотографическое или компьютерное, введенное телекамерой или сканером.

Простота примера состоит в том, что как картина, так и ее изображение на пленке или в телевизионном кадре записи - двумерны. Вводя соответствующие системы координат, представим их так

f(a,b) - объект;

g(x,y) - изображение объекта.

Общепринято объект обозначать буквой f, а изображение -g.

Заметим сразу, что изображение может выступать как образ картины в том числе в автоматической системе распознавания, будучи введенным в компьютер для прямого сопоставления с другими изображениями. Но при этом обратим внимание и на то, что изображение здесь - это уже не сам объект.

Можно понять, что идеальная изображающая система - это такая система, для которой в любой точке пространства выполняется равенство f = g. На практике почти не существует таких систем. Функциональные связи между f и g всегда подлежат экспериментальному определению.

Для понимания сути вопроса рассмотрим простейшую оптическую систему получения фотографий картины, нарисованной на двухмерном экране. Здесь мы имеем дело с объектом, лежащем в плоскости, и таким же плоским изображением.

В данном примере распределения f и g имеют одну и ту же размерность, поскольку они являются пространственным распределением интенсивности света или его цвета в плоскости.

Фотография формируется квантами света, отраженного от картины, прошедшего через линзовую систему фотоаппарата и попавшего на фотопленку. Такое формирование изображения приводит к потери качества за счет искажений и несовершенства приемного устройства, и следовательно, в этом случае f и g не равны друг другу. И только если известен закон потери качества, то можно провести компенсацию искажений путем соответствующей обработки изображения.

Другим примером могут быть двухмерные изображения g распределения f радиационного препарата в организме человека, полученные с помощью гамма-камеры, поворачивающейся последовательно на определенные углы относительно пациента. Здесь надо избавиться от иллюзии того, что полученные детали изображения соответствуют областям интереса врача-диагноста. Дело в том, что рассмотренное визуализированное изображение - это не распределение активности поглощения в теле пациента, а распределение интенсивностей только в элементах изображения.

То есть, изображение g есть некоторое представление (описание) объекта f, которое, хотя и располагается в том же месте, но может иметь отличия не только качественные, но и такие количественные как размеры. В данном случае приходится констатировать, что процессы в гамма-камере, с помощью которой производится регистрация исходных данных, на сегодняшний день не имеют математического описания, позволяющего связать объект с его изображением. Это еще раз заставляет подчеркнуть, что врач не видит изменений интенсивности поглощения гамма-излучения в теле пациента, а только - распределение интенсивностей на изображении, полученном с помощью системы регистрации. А отсутствие математического описания связей изображения и процесса не позволяет строго трактовать результаты медицинского наблюдения. Остается надеяться только на опыт врача.


Страница: