Обеспечение надежности функционирования КСРефераты >> Математика >> Обеспечение надежности функционирования КС
Содержание
Задание
Содержание
Введение
Расчетная часть
Задание 1
Задание 2
Задание 3
Задание 4
Выводы
Литература
Введение
В последние годы все больше и больше различная вычислительная техника входит в нашу жизнь и выполняет все более сложные и ответственные задачи. Сейчас уже многие опасные и жизненно важные технологические процессы автоматизированы с использованием вычислительной техники. Это приводит к необходимости обеспечения высокой надежности и эффективности таких систем.
В данной работе отражаются основные принципы и методы расчета надежности автоматизированных систем различных структур.
Расчетная часть
Задание 1
Функция F(x) распределения времени длительности восстановления системы выглядит следующим образом:
Рис. 3.
Решение.
1. Найдем fτв(t) при различных значениях аргумента. При -∞ < t £ а fτв(t)=0; при a £ t < b fτв(t)=F(t)¢
Следовательно
Примем: a=5, b=10
2. Найдем вероятность восстановления системы за время t - G(t): при -∞ < t £ a G(t)=0; при b £t £ ∞ G(t)=0; при a < t < b :
3. Найдем Tв. При -∞ < t £ a Tв=0; при b £t £ ∞ Tв=1;
В результате мы получили следующие формулы для вычисления показателей безотказности системы;
а) плотность распределения длительности восстановления системы fτв(t):
Рис. 4.
на рис. 4 приведен график плотности при a=5, b=10.
б) вероятность восстановления течение времени t
в) среднее время восстановления:
Задание 2
Структура системы приведена на рисунке 1 в задании. А данные следующие:
l1= |
0,0001 1/ч |
l2= |
0,01 1/ч |
l3= |
0,1 1/ч |
Tв1= |
1 ч |
Tв2= |
0,5 ч |
Tв3= |
0,25 ч |
tp= |
100 ч |
Резерв нагружен.
Решение.
Будем использовать алгоритм последовательного структурного укрупнения. Суть метода состоит в последовательном преобразовании системы. Преобразуем параллельную часть структуры системы, используя формулы дублирования для нагруженного резерва:
Все преобразования показаны на рисунке 5.
Рис. 5.
Для последовательного включения 2-3 формулы надежности:
Получаем:
Далее рассчитываем параметры для дублированных элементов 2-3, при параллельном включении:
Аналогично для элемента 1:
Предполагаем что время отказа и восстановления системы распределено по экспоненциальному закону. Используя вышеприведенные формулы, вычислим интенсивность отказов системы и среднюю наработку на отказ:
λ с= 0,00622589473 1/ч; Toc = 160,619 ч;
Также по формуле для среднего времени восстановления системы при последовательном соединении 1d и 23d получаем:
так как интенсивность устранения отказов резервированого узла содержащего k елементов:
μу = k*μj ;
Вероятность безотказной работы системы:
Pc(100)= 0,537; Qc(100)=0,463;
Коэффициент готовности:
Кгс= 0,999152;
В результате расчетов мы получили следующие показатели надежности:
λ с= 0,00622589473 1/ч;
Toc = 160,619 ч;
Кгс= 0,999152;
Pc(100)= 0,537;
Qc(100)= 0,463;
Задание 3
Структура системы отображена на рис. 2 в задании.
Решение.
Будем использовать алгоритм последовательного структурного укрупнения. Суть метода состоит в последовательном преобразовании системы. Преобразуем заданнную структуру в структуру с последовательным соединением элементов. При этом будем использовать метод разложения булевой функции относительно «особого» элемента.
Преобразуем схему в две (рис. 6,7.)
Рис. 6.
Таким образом, мы преобразовали функцию B=f(Ai), i=1,7 к следующему виду:
B=A3f(Ai) ÈùA3f(Ai)
Получаем вероятность безотказной работы
P(B)=P(A3f(Ai))+P(ùA3f(Ai))= P(A3)P(f(Ai/A3))+ P(ùA3)P(f(Ai/ùA3))= =P3(t) P(f(Ai), при A3=1)+(1- P3(t)) P(f(Ai), при A3=0)
Также имеем формулы для последовательного и параллельного соединений:
- последовательное
-параллельное
Отсюда получаем, для схемы 1 и 2: