Метод хордРефераты >> Математика >> Метод хорд
Пусть дано уравнение , где - непрерывная функция, имеющая в интервале (a,b) производные первого и второго порядков. Корень считается отделенным и находится на отрезке [a,b].
Идея метода хорд состоит в том, что на достаточно малом промежутке [a,b] дугу кривой можно заменить хордой и в качестве приближенного значения корня принять точку пересечения с осью абсцисс. Рассмотрим случай (рис.1), когда первая и вторая производные имеют одинаковые знаки, т.е. .
Уравнение хорды - это уравнение прямой, проходящей через две точки (a, f(a)) и (b, f(b)).
Общий вид уравнения прямой, проходящей через две точки:
Подставляя в эту формулу значения, получим уравнение хорды AB:
.
Пусть x1 - точка пересечения хорды с осью x, так как y = 0, то
x1 может считаться приближенным значением корня.
Аналогично для хорды, проходящей через точки и , вычисляется следующее приближение корня:
В общем случае формулу метода хорд имеет вид:
(1)
Если первая и вторая производные имеют разные знаки, т.е. , то все приближения к корню выполняются со стороны правой границы отрезка (рис.2) и вычисляются по формуле:
(2)
Выбор формулы в каждом конкретном случае зависит от вида функции и осуществляется по правилу: неподвижной является такая граница отрезка изоляции корня, для которой знак функции совпадает со знаком второй производной. Формула (1) используется в том случае, когда . Если справедливо неравенство , то целесообразно применять формулу (2).
Итерационный процесс метода хорд продолжается до тех пор, пока не будет получен приближенный корень с заданной степенью точности. При оценке погрешности приближения можно пользоваться соотношением
Если обозначить через m наименьшее значение |f'(x)| на промежутке [a, b], которое можно определить заранее, то получим формулу для оценки точности вычисления корня:
или
где - заданная погрешность вычислений.
Список идентификаторов.
a – начало отрезка,
b – конец отрезка,
eps – погрешность вычислений,
x – искомое значение корня,
min – модуль значения производной функции в начале отрезка,
d – модуль значения производной функции в конце отрезка,
x0 – точка, в которой мы ищем производную.
****************************************************************
Program kursovaia;
uses crt;
Var
a,b,eps,x,min: real;
{Вычисление данной функции}
Function fx(x:real): real;
begin
fx:=exp(x)-10*x;
end;
----------------------------------------------------------------
{Функция вычисления производной и определение точности вычислений}
{Для определения точности вычисления берем значение 2-й производной в точке x*=}
Function proizv(x0,eps: real): real;
var
dx,dy,dy2: real;
begin
dx:=1;
Repeat
dx:=dx/2;
dy:=fx(x0+dx/2)-fx(x0-dx/2);
dy2:=fx(5*x0/4+dx)-2*fx(5*x0/4);
dy2:=dy2+fx(5*x0/4-dx);
Until abs(dy2/(2*dx))<eps;
proizv:=dy/dx;
end;
----------------------------------------------------------------
{Уточнение количества знаков после запятой}
Function utoch(eps:real): integer;
var
k: integer;
begin
k:=-1;
Repeat
eps:=eps*10;
k:=k+1;
Until eps>1;
utoch:=k;
end;
----------------------------------------------------------------
{Процедура определения наименьшего значения производной на
заданном промежутке}
Procedure minimum(a,b,eps: real; var min: real);
var
d: real;
begin
a:=a-eps;
b:=b+eps;
Repeat
a:=a+eps;
b:=b-eps;
min:=abs(proizv(a,eps));
d:=abs(proizv(b,eps));
If min>d Then min:=d
Until min <>0
end;
----------------------------------------------------------------
{Процедура уточнения корня методом хорд}
Procedure chord(a,b,eps,min: real; var x:real);
Var
x1: real;
begin
x1:=a;
Repeat
x:=x1-((b-x1)*fx(x1))/(fx(b)-fx(x1));
x1:=x
Until abs(fx(x))/min<eps
end;
----------------------------------------------------------------
{Основная программа}
Begin
clrscr;
Writeln ('Введите начало отрезка a, конец отрезка b');
Readln (a,b);
Writeln ('Введите погрешность измерений eps');
Readln (eps);
minimum(a,b,eps,min);
chord(a,b,eps,min,x);
Writeln ('Корень уравнения x= ',x:3:utoch(eps));
End.
****************************************************************
После работы программы для различных значений погрешностей, получим результаты корня x :
0,11
0,111
0,1119
0,11183
0,111833