Дрейф геновРефераты >> Математика >> Дрейф генов
Дрейф генов -это случайные отклонения частот аллелей от теоретически ожидаемых, возникающие в результате недостаточного объема выборки. Такие явления часто называют ошибками выборки. Дрейф генов постоянно происходит в популяциях, поскольку их численность всегда конечна. Дополнительно заметим, что правильное представление о численности популяции дает не общее число особей, а число особей дающих начало следующему поколению. Действительно, только они дают вклад в генофонд следующего поколения.
Будем рассуждать в терминах аллелей, не переходя к генотипам. Рассмотрим популяцию аллелей и . Пусть априорно их частоты суть и . Случайным образом сформируем выборку из аллелей, которые оставят потомство. Пусть -число аллелей в выборке. Согласно теореме Муавра -Лапласа вероятность события , где , стремится при к числу . Здесь -нормальное распределение. В частности, если , то . Для эмпирической частоты аллеля в выборке получаем оценку: , которая выполнена с вероятностью . Поскольку , то . Чем длиннее выборка, тем эмпирическая частота ближе к априорной. Например, при получаем . Наоборот, при эмпирическая частота аллеля может принимать лишь одно из трех значений , т.е. эмпирическая частота в общем случае далека от априорной.
Рассмотрим следующую модельную ситуацию. Пусть для родителей, давших жизнь первому поколению, аллели и наблюдались с априорными частотами и . Начиная с нулевого поколения случайным образом формируется выборка из аллелей, которые дают начало следующему поколению. Выборку назовем эффективной популяцией, а ее длину - эффективной численностью. Будем считать, что из поколения в поколение эффективная численность неизменна. Допустим еще, в момент появления на свет нового поколения общая численность популяции становится значительно больше . При этом частоты аллелей в новом поколении (до формирования эффективной популяции) совпадают с частотами эффективной популяции предыдущего поколения.
Будем говорить, что эффективная популяция находится в состоянии , если она содержит ровно аллелей . Для состояния частота аллелей а эффективной популяции суть . В любом поколении эффективная популяция находится в одном из -ом состояний . Рассмотрим эффективную популяцию -ого поколения. Пусть она находится в -ом состоянии. Вероятность того, что в следующем -ом поколении эффективная популяция будет находиться в состоянии суть
. (34)
Обратим внимание, что и для всех , а также и для всех . Таким образом, если в -ом поколении популяция оказывается в состояниях или , то в дальнейшем она остается в эти состояниях. Пусть эффективная популяция -ого поколения находится в состояниях с вероятностями . Используя формулу полной вероятности, получаем вероятности
(35)
того, что эффективная популяция -ого поколения окажется в состоянии . Введем последовательность векторов вероятностей состояний эффективных популяций последовательных поколений и матрицу . Тогда сотношения (35) перепишутся в виде: