Формальный нейрон Мак-Каллока - ПиттсаРефераты >> Математика >> Формальный нейрон Мак-Каллока - Питтса
Задача о нахождении вектора, на котором реализуется минимальное расстояние от нуля до выпуклой оболочки сама по себе весьма сложна. Если число векторов не превышает размерность пространства и сами они линейно независимы, то отделяющую гиперплоскость можно построить другим способом. Достаточно провести через векторы какую-нибудь не содержащую ноль гиперплоскость, а затем сдвинуть ее по направлению нормали ближе к нулю. В качестве вектора синаптических весов следует взять нормальный к
гиперплоскости вектор, направленный в полупространство, не содержащее ноль. Нормальный вектор к гиперплоскости, содержащей векторы строится конструктивно. Выбор вектора будет однозначным (с точность до множителя), если предполагать, что он принадлежит подпространству, порожденному векторами .
При построении будем использовать алгоритм Шмидта. Он позволяет по последовательности линейно независимых векторов построить последовательность ортогональных между собой векторов, обладающих следующим свойством. Вектор принадлежит подпространству, порожденному векторами и ортогонален всем векторам, расположенным в подпространстве, порожденном векторами . Последовательность строится рекуррентно. Положим . Вектор представим в виде: . Из условия получим: . Далее полагаем . Вектор ортогонален любому вектору из подпространства, порожденного векторами , которому принадлежат векторы . Следовательно и . Учитывая ортогональность векторов , получаем: , . На - ом шаге алгоритма полагаем
. (15)
Из условия в силу ортогональности векторов находим . Отметим важное обстоятельство, что
. (16)
Действительно, из (15) следует:
Пусть векторы , где линейно независимы. Построим проходящую через них гиперплоскость , т.е. такую гиперплоскость, для которой при всех . Используя алгоритм Шмидта, ортогонализируем последовательность векторов (легко видеть, что они линейно независимы). Пусть последний элемент последовательности суть . Это и есть искомый нормальный вектор. Действительно, по построению для . Таким образом, для всех . В силу (16) получаем . Используя это равенство, уравнение гиперплоскости можно переписать в виде: .
Зафиксируем произвольно . Гиперплоскость отделяет векторы от нуля. Действительно, .
Рассмотрим задачу о разделении гиперплоскостью множеств векторов и , для . Она разрешима в том и только том случае, когда выпуклые оболочки и соответственно векторов и не пересекаются. Пусть и - векторы, на которых реализуется минимальное расстояние между точками выпуклых оболочек и . Тогда разделение множеств осуществляет любая гиперплоскость, которая ортогональна отрезку, соединяющего векторы и и проходит через его внутреннюю точку.
Нахождение векторов и - сложная задача. Разделяющую гиперплоскость можно легко построить, если число и векторы , линейно независимы (можно вычитать любой фиксированный вектор , или ). Рассмотрим последовательность векторов , , . Они линейно независимы. Используя алгоритм Шмидта, по данной последовательности построим ортогональную последовательность. Пусть - последний вектор, полученный в процессе ортогонализации. По построению для , для . Из равенства (16) следует, что . Тем самым, , . Кроме того, . Обозначим: и . Пусть . Гиперплоскость разделяет векторы и . Действительно, , .