Математическая теория захватыванияРефераты >> Математика >> Математическая теория захватывания
Начальные условия для Ао , Во, …. Следует выбрать так, чтобы выполнялись условия (11). Действительно подставляя (11) в (12) и сравнивая коэффициенты при соответствующих степенях m, получим
Для В'о и Во аналогично. Для остальных же как видно из уравнений условия будут нулевые. Итак:
(14)
Решение (13) можно найти при помощи квадратур:
(15)
Если вспомнить общую теорию линейных диффуров с периодическими коэффициентами, то общее решение (10) имеет вид:
S1, S2 - периодические функции с тем же периодом, что и Ф (t). a1, a2 - характеристические показатели.
Если все , т.е. колебания затухают, то в этом случае выполняется теорема, доказанная Ляпуновым, относительно того, что периодическое решение уравнения первого приближения вполне устойчиво. Согласно Пуанкаре характеристические показатели можно определить из следующего уравнения:
=0 (16) Полагаем ;
Тогда определитель будет:
Вопрос об устойчивости, как сказано выше, решается знаком Re (a), или что все равно ÷ l÷ . Если ÷ l÷ < 1 имеет место устойчивость ÷ l÷ = 1 этот случай для нашей задачи не представляет интереса. ÷ l÷> 1 имеет место неустойчивость.
При рассмотрении (18) имеют место 2 случая q > р2; q < р2; В первом случае l-комплексные; ½l2 ½=q; (20) если q<1; устойчивость q>1 - неустойчивость.
Случай второй - l - действительные: ; (21) устойчивость соответствует p и q нетрудно получить в виде рядов по степени m из формул (19) (12).
(22)
Если принять во внимание (15)
(22a)
(23)
Мы видим, что при достаточно малом m и w¹n; n ' Z вопрос об устойчивости решается величиной q и следовательно знаком b, если b < 0- имеет место устойчивость, b > 0 - неустойчивость.
В нашем случае b имеет вид:
(23a)
§ 3 Отыскание периодического решения в области резонанса.
Тогда l=mlо; w2 = 1+ aо m, (24) (aо , m - расстройка , реальный физический резонанс наступает при aо ¹ 0).
Тогда исследуемое уравнение имеет вид :
(25)
При m = 0 периодическое решение будет иметь вид : (26)
Следуя Пуанкаре, мы можем предположить периодическое решение в виде:
(27);
Начальные условия возьмем как и раньше:
Аналогично тому, как мы это делали в предыдущих параграфах. Подставляем (27) в (25) и, сравнивая коэффициенты при b1 b2, m и других интересующих нас величинах, получим уравнение, которым удовлетворяет A, B, C, D, E, F. Начальные условия для этих уравнений определим, если подставим (28) в (27).
(29)
Запишем условия периодичности для (27):
Делим на m:
( 30a )
Необходимым условием существования периодического решения является:
Эти уравнения определяют P и Q решения (26), в близости к которому устанавливается периодическое решение. Они могут быть записаны в раскрытой форме :
(31)
Для существования искомого периодического решения достаточно неравенство 0 детерминанта: (см. § 1).
D, Е и их производные найдутся из (29) при помощи формул аналогичных (15). Заметим, что (30) мы можем определить b1, b2, в виде рядов по степеням m. Таким образом, мы можем (27) как и в § 1 представить в виде ряда.
(33)
P,Q-определяются формулами (31) (32).
§ 4 Исследование устойчивости периодических решений в области резонанса
Аналогично тому, как мы это делали в § 2, составим уравнение первого приближения, порожденное решением (33).
Решение опять будем искать в виде . Однако нет необходимости проделывать все выкладки заново. Воспользуемся результатами § 2, приняв:
Из формул (22) (34) , тогда D - тот же Якобиан, что и (32). Распишем его:
(36)
;
Тогда, зная функцию f, мы можем вычислить D в виде функции P, Q и aо.
Заметим, что равенство (23 а) в нашем случае имеет вид:
; (37)
Опираясь на результаты исследования, полученных в § 2, нужно рассмотреть при исследовании устойчивости два случая: (при достаточно малых m)
1) p2 - q < 0
2) p2 - q > 0
В первом случае устойчивость характеризуется условием q < 1 или, что то же самое b < 0.
Во втором случае (*) последнее может быть выполнено только, если b < 0, а D > 0. Нетрудно видеть, что необходимым достаточным условием в обоих случаях является b < 0, D > 0. (Это можно получить из неравенства (*) ).
§ 5 Применение общих формул, полученных в предыдущих параграфах, к теории захватывания в регенеративном приемнике для случая, когда характеристика - кубическая парабола.