Смежные классы; разложение группы по подгруппе.Рефераты >> Математика >> Смежные классы; разложение группы по подгруппе.
Некоторые свойства АО наглядно проявляются в устройстве ее таблицы Кэли. Например, коммутативность умножения проявляется в симметричности таблицы относительно главной диагонали. Напротив, свойство ассоциативности не имеет столь наглядной интерпретации в устройстве ее таблицы умножения.
Нормальные подгруппы
Пусть G - произвольная группа и H - ее подгруппа. Рассмотрим множество{ } всех попарно различных левых смежных классов G по H.
Определение
Подгруппа H называется нормальной в G (обозначение: ), если произведение любых двух левых смежных классов также представляет собой левый смежный класс.
Итак, нормальность подгруппы H означает, что
Произведение (x*H)*(y*H) содержит, в частности, элемент (x*e)*(y*e)=x*y и значит, если это произведение является смежным классом, это может быть только класс (x*y)*H. Поэтому определение нормальной подгруппы принимает следующий вид: H нормальна в G, если для любых x и y
(x*H)*(y*H)=(x*y)*H. (1)
Теорема (признак нормальной подгруппы)
H нормальна в G тогда и только тогда, когда выполнено следующее условие: каждый правый смежный класс H*x совпадает с левым смежным классом x*H.
Доказательство
Пусть H нормальна в G то есть выполнено (1). Возьмем в этом равенстве x=e, тогда получаем, что H*y*H=y*H, откуда следует, что.Запишем это равенство для элемента : . Умножая это включение слева и справа на y получим : , то есть . Таким образом, классы H*y и y*H совпадают. Обратно, если H*y=y*H, то (x*H)*(y*H)=x*(H*y)*H=x*(y*H)*H= (x*y)*H*H = (x*y)*H, то есть (1) выполнено.
Замечание 1.
Равенство H*x=x*H можно записать в равносильной форме: . Проверим, что множество , стоящее в левой части этого равенства является подгруппой в G для всякого . Используем признак подгруппы : так как H является подгруппой и потому .
Каждая из подгрупп называется подгруппой сопряженной с H. Условие нормальности поэтому можно еще сформулировать так. Подгруппа H группы G нормальна, если
Замечание 2.
В коммутативной группе левые и правые смежные классы очевидно совпадают и потому в этом случае любая подгруппа будет нормальной. В некоммутативном случае могут встречаться и подгруппы, не являющиеся нормальными. Например, вернемся к группе и ее подгруппе H. Как мы видели выше, левые {1,2}; {3,4); {5,6} и правые
{1,2}; {3,5}; {4,6} классы по этой подгруппе не совпадают и значит H нормальной не является. Легко посчитать, что, например, {3,4}*{5,6}={1,2,5,6} так что это множество смежным классом не является. Напротив, - нормальная подгруппа в и ее классы
={1,4,5} и ={2,3,6) перемножаются по правилу.
Факторгруппа
Пусть H - нормальная подгруппа группы G. Обозначим через G/H множество всех попарно различных смежных классов (безразлично, левых или правых). Как нам известно, (x*H)*(y*H)=(x*y)*H, так что на множестве G/H определена АО. Эта операция, очевидно, ассоциативна. Поскольку H=, H*(x*H)=(x*H)*H=x*H и значит смежный класс H является нейтральным элементом для этой АО. Наконец,
так что каждый смежный класс обратим. Поэтому G/H оказывается группой, называемой факторгруппой группы G по нормальной подгруппе H.
Примеры
1. Мы уже построили выше факторгруппу S(3)/A(3). Имеется 2 смежных класса и с таблицей умножения:
2. Каждый левый смежный класс A*SL(n,R) в группе GL(n,R) состоит из всех матриц, определитель которых равен d=det(A). Аналогичное описание верно и для правого класса SL(n,R)*A, который, таким образом, совпадает с левым и SL(n,R) GL(n,R). Обозначим этот смежный класс символом C(d). Здесь d - любое ненулевое вещественное число. Поскольку при перемножении матриц их определители также перемножаются, C(d)*C(b)=C(db). Этим полностью описана факторгруппа GL(n,R)/SL(n,R).
3. Пусть n=1, 2, . , Целые числа кратные n образуют подгруппу nZ группы Z. Так как группа Z коммутативна, эта подгруппа нормальна. Каждый смежный класс p+nZ состоит из всех целых чисел, дающих при делении на n такой же остаток r что и число p. Обозначим этот смежный класс символом C(r) Поскольку r=0, 1, . (n-1), факторгруппа имеет порядок n. При этом C(r)+C(s)=C(r+s), причем имеется в виду, что если r+s>n-1, необходимо заменить r+s на r+s-n (сложение по модулю n).