Теорема ГульденаРефераты >> Математика >> Теорема Гульдена
Ph Гульдена Пусть криволинейная трапеция вращ. вокруг оси oX. Тогда она опишет тело вращения с массой
из формулы для центра масс знаем:
Объем тела, полученного вращением крив. трапеции, равно произведению площади этой трапеции на длину окружности, описанную из центра масс.
Однородная плоская дуга
От точки с абсциссой х отложим дугу длины . Тогда ,
2 теорема Гульдена
Пусть плоская дуга вращается вокруг оси oX. Она опишет площадь:
Площадь поверхности, полученная вращением дуги, равна произведению длины этой дуги на длину окр-ти, описыв-ю ц. масс.
Несобств. интегралы.
Для существования определенного интеграла должны выполняться два условия:
1. Предел интегрирования конечный;
2. Подынтегральная ф-ия ограничена.
Нарушение этих двух условий приводит к несуществующему интегралу.
В этом случае вводится обобщение определенного интеграла, который называется несобственным интегралом.
1. Несобственный интеграл с бесконечным пределом интегрирования.
а) - Пусть - интегрируема на любом, где , то по определению:
Если предел в правой части существует и конечен, говорят, что, инт. сходится; нет - расходятся.
б)
в) Этот случай сводится к предыдущему ***
, ; Результат от с не зависит
Zm: Инт. в левой части существует, если интеграл в правой части существует по отдельности, т.е. предел интегрирования в этих интервалах надо обозначать разными буквами.
Признаки сходимости
В некоторых случаях достаточно знать, сходится интеграл или нет, без его вычисления. Для этого применяется признак сравнения.
1). Пусть и интегрируемы наи удовлетворяют на этом промежутке неравенству:, то справедливо следующее утверждение:
Обратное утверждение неверно!!!
Rn
*******
1.
2.
3.
4.
На арифм. эмерном пространстве метрика вводится по формуле:
, где
Арифм. эмерное пространство, сведенное с метрикой по формуле - евклидово пространство.