Непрерывность и арифметические операцииРефераты >> Математика >> Непрерывность и арифметические операции
- непрерывная.
Степень ф-ии с вещественным показателем.
Справка: .
Геометрический смысл производной.
Из второй задачи следует, что поизводная ф-ии в т. х0 =тангенсу угла наклона касательной, проведенной к графику ф-ии в этой точке.
Sl1 : Уравнение касательной к кривой. Его можно написать, зная точку, через которую она проходит, и угловой коэффициент
где x и y – координаты т. на касательной.
Sl2 : Уравнение нормали. Его можно написать, зная точку, через которую она проходит и угловой коэффициент
, x и y – точки на нормали.
Механический смысл производной.
************
Дифференцируемость ф-ии.
Df : Ф-ия дифференцируема в точке х0 , если приращение ф-ии в точке сможет быть представлено в виде:
, А – const.
Dh: Для дифференцирования ф-ии в т. х0 , необходимо и достаточно, чтобы в этой точке существовала производная.
Доказательство: (необходимость)
(достаточность):
Производная суммы, произведения, частного.
Dh:Пусть ф-ия и дифференцируемы в точке х0 , тогда в этой точке дифференцируемы их сумма, произведение и частное, причем выполняются формулы:
1.
2.
3. , если
Лемма: Ф-ия, дифференцируема в точке х0 , непрерывнна в этой точке.
- дифф. в т. х0
обратное утверждение неверно!!!
Производная от const ф-ии =0.
Если
Доказательство:
Zm1: При вычислении производной, константу можно выносить за знак производной.
Zm2: Данные формулы можно рассматривать на большее число слагаемых и сомножителей.
Df: Линейным колебанем системы из т. ф-ий называется сумма призведения этих ф-ий на производную и постоянную.
Zm: Свойство линейности производной.
Из доказанных свойств, следует, что производная от линейных колебаний ф-й = линейные комбинации призводных.
Производная от обратной ф-ии.
Dh: Пусть в точке х0 имеет:
1.
2. на промежутке, содержащем х0 , обратную ф-ию
3.
тогда в точке х0 существует , равная