Переход к пределу в неравенствеРефераты >> Математика >> Переход к пределу в неравенстве
Теорема: Пусть f(х) и j(х) имеют конечные пределы в т. y=a, тогда справедливо:
1.
2.
3.
4.
Доказательство:
1. Пусть , тогда по общему свойству №6
,
а это противоречит 1
Замечание:
1. Из утверждения №3 следует, что предел неотрицательной ф-ии является неотрицательным.
2. При пределов к противоположным можно обе части умножать на (-1).
Теорема 2(о двух миллиционерах ) Пусть в некоторой области Д выполняется система неравенств и а – предел точки.
Пусть существуют равные пределы ,
тогда существует .
Доказательство:
Первый замечательный предел
Доказательство: докажем для справедливость неравенства
В силу четности входящих в неравенство ф-ий, докажем это неравенство на промежутке
Из рисунка видно, что площадь кругового сектора
, так как х>0, то ,
2. следовательно, что
3. Покажем, что
4. Докажем, что
5. Последнее утверждение:
Второй замечательный предел
Понятие касательной к прямой.
Прямая, проходящая через две точки кривой – секущая.
Предельное положение секущей, которое она занимает при стремлении т. М к т. М0 называется касательной к кривой в т. М0
Бесконечные пределы ф-ии.
Если в общем определении предела через окрестности положить в качестве А бесконечно удаленную точку, то получим определение бесконечного предела.
Так как различают три вида бесконечно удаленных точек, то существуют три определения:
1.
2.
3.
Понятие непрерывности ф-ии.
Непрерывность – такое свойство ф-ии, как отсутствие точек разрыва у графиков этой ф-ии. Т.е. строится единственной непрерывной линией.
График непрерывной ф-ии ; График ф-ии, разрывной в т. С;
1.Ф-ия называется непрерывной в точке х0 , если предел в данной точке совпадает со значением ф-ии в этой же точке
2.
3. Разность -приращение аргумента в точке х0
4. Разность - приращение ф-ии в точке х0 вызывает приращение аргумента
5. Ф-ия называется непрерывной в точке х0 , если бесконечно малому аргументу соответствует бесконечно малое значение ф-ии в точке х0 .
Общие свойства ф-ии, непрерывной в точке.
Представим ф-ию с помощью бесконечно малых
1.
2.Пусть ф-ия непрерывна в точке х0 и ее значение в этой точке отлично от нуля, то существует целая окрестность х0 , в которой ф-ия не равна нулю и сохраняет знак f(x0)
sign(х)(сигнум)
Доказательство:
а)
б)