Гомоморфизм.
Рефераты >> Математика >> Гомоморфизм.

Гомоморфизм групп - это естественное обобщение понятия изоморфизма.

Определение.

Отображение групп называется гомоморфизмом, если оно сохраняет алгебраическую операцию, то есть : .

Таким образом, обобщение состоит в том, что вместо взаимно однозначных отображений, которые участвуют в определении изоморфизма, здесь допускаются любые отображения.

Примеры.

1. Разумеется, всякий изоморфизм является гомоморфизмом.

2. Тривиальное отображение является гомоморфизмом.

3. Если - любая подгруппа, то отображение вложения будет инъективным гомоморфизмом.

4. Пусть - нормальная подгруппа. Отображение группы G на факторгруппу G/H будет гомоморфизмом поскольку . Этот сюръективный гомоморфизм называется естественным.

5. По теореме С предыдущего раздела отображение сопряжения сохраняет операцию и, следовательно является гомоморфизмом.

6. Отображение , которое каждому перемещению n- мерного пространства ставит в соответствие ортогональный оператор (см. лекцию №3) является гомоморфизмом поскольку по теореме 4 той же лекции .

Теорема (свойства гомоморфизма)

Пусть - гомоморфизм групп, и - подгруппы. Тогда:

1. , .

2. - подгруппа.

3. -подгруппа, причем нормальная, если таковой была .

Доказательство.

1. и по признаку нейтрального элемента . Теперь имеем: .

2. Пусть p = a(h) , q = a(k) . Тогда и . По признаку подгруппы получаем 2.

3. Пусть то есть элементы p = a(h) , q = a(k) входят в . Тогда то есть . Пусть теперь подгруппа нормальна и - любой элемент. и потому .

Определение.

Нормальная подгруппа называется ядром гомоморфизма .Образ этого гомоморфизма обозначается .

Теорема.

Гомоморфизм a инъективен тогда и только тогда, когда

Доказательство.

Поскольку , указанное условие необходимо. С другой стороны, если , то и если ядро тривиально, и отображение инъективно.

Понятие гомоморфизма тесно связано с понятием факторгруппы.

Теорема о гомоморфизме.

Любой гомоморфизм можно представить как композицию естественного (сюръективного) гомоморфизма , изоморфизма и (инъективного) гомоморфизма (вложения подгруппы в группу): .

Доказательство.

Гомоморфизмы p и i описаны выше (см. примеры) Построим изоморфизм j. Пусть . Элементами факторгруппы являются смежные классы Hg . Все элементы имеют одинаковые образы при отображении a : . Поэтому формула определяет однозначное отображение . Проверим сохранение операции .Поскольку отображение j очевидно сюръективно, остается проверить его инъективность. Если , то и потому . Следовательно, и по предыдущей теореме j инъективно.

Пусть - любой элемент. Имеем : . Следовательно, .

10 Циклические группы.


Страница: