Задачи и решения по теории вероятности
Рефераты >> Математика >> Задачи и решения по теории вероятности

г) вероятность появления события хотя бы один раз в 5 испытаниях:

Задача № 4

№№ 61-80. Дана плотность распределения f(x) случайной величины Х. Найти параметр а, функцию распределения случайной величины, математическое ожидание М[Х], дисперсию D[X], вероятность выполнения неравенства х1<x< x2, построить график функции распределения F(x).

Решение:

Для определения параметра а воспользуемся основным свойством плотности распределения:

, так как при плотность распределения равна нулю, то интеграл примет вид: или , откуда

;

Функция распределения связана с функцией плотности соотношением:

Откуда получим:

Математическое ожидание и дисперсию определим по формулам:

Вероятность выполнения неравенства <x< определим по формуле: Р( <x< )=F( ) – F( )=

Задача №5

№№ 81-100. Найти вероятность попадания в заданный интервал нормально распределенной случайной величины, если известны ее математическое ожидание а и среднее квадратическое отклонение (см. исходные данные в таблице).

a = 10

b = 22

a = 8

s = 6

Решение:

Для определения искомой вероятности воспользуемся формулой:

Здесь - функция Ломпаса, значения которой определяются по таблице. Учитывая, что функция Ф(х) нечетная, получим:


Страница: