История развития начертательной геометрии
"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."
Леонардо да Винчи
Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.
Независимо от способа выполнения чертежа - ручного, механизированного или автоматизированного - знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.
Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.
С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.
Время и место возникновения геометрии не установлено.
Потребность в построении изображений по законам геометрии (проекционных чертежей, "projecere"- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе - из запросов машиностроения и техники.
Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих пор элементарная геометрия была расширена и ее назвали трансцендентной.
Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. "Начала" Евклида - первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку "Начал".
"Золотым веком" греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к "Началам" Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается классическая геометрия.
Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.
И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) - он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) - рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.
В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге "Наставление" он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди "Шесть книг по перспективе" содержит решение почти всех основных задач перспективы.
Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении "Общий метод изображения предметов в перспективе" впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.
Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии - дифференциальную. Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.
Аналитические и дифференциальные методы сложны в применении. "Геометрию надо строить геометрически" ("Geometria geometrice") - была поговорка среди математиков. Появилась еще одна ветвь геометрии - проективная, в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].
Развитию "вольной перспективы" посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу - реконструирование объекта по его чертежу, выполненному в центральной проекции.