Астрономическая картина мира и ее творцы
Рефераты >> Астрономия >> Астрономическая картина мира и ее творцы

С именем выдающегося американского астронома-наблюдателя Эдвина Пауэлла Хаббла (1889-1953) связанно создание современной внегалактической астрономии и второе за всю историю изучения неба непосредственное наблюдательное открытие универсальной космологической закономерности - эффекта «расширения вселенной».

В первой четверти XX века благодаря крупным успехам в различных областях астрофизики и совершенствованию астрономической наблюдательной техники возродился интерес к изучению мира туманностей. Природа туманностей, среди которых, как выяснилось к этому времени, большинство составляли спиральные, все еще оставалась не установленной.

Правда, с внедрением метода спектрального анализа у таких туманностей был открыт характерный для звезд спектр с линиями поглощения (В. Хеггинс, 1867 год). Однако неоднократные разочарования на догом пути разгадывания природы туманностей сделали астрономов более осторожными: не исключалось, что это скопление диффузной материи, которая лишь отражает свет окружающих звезд . С недоверием были встречены даже достаточно обоснованные оценки расстояний до некоторых спиральных туманностей по обнаруженным в них «новым звездам», сделанные в 1919 году Г. Кертисом и К. Лундмарком (соответственно, 500 и 900 тысяч световых лет до туманности Андромеды).

Между тем решение проблемы имело большое мировоззренческое значение. Оно должно было положить конец почти двухвековому спору о множественности «звездных вселенных», иначе, решить судьбу концепции островных вселенных. С этим решением связывали получение на главной вопрос космологии - о конечности или бесконечности Вселенной (последний вывод более гармонировал с идеей островных вселенных).

На протяжении первых двух десятилетий XX века благодаря фундаментальным исследованиям структуры Галактики американским астроном Харлоу Шепли (1885-1972) более распространенным стало мнение о единственности нашей звездной системы и о внутригалактическом положении всех наблюдаемых, в том числе спиральных туманностей. Кстати, сам Шепли, оценивший диаметр Галактики в 300 тысяч световых лет, вовсе не отрицал, как и Р. Проктор в свое время, возможности существования других подобных систем - галактик, пологая лишь, что из-за чудовищной удаленности их они пока не наблюдаются.

К 1920 году благодаря наблюдениям и оценкам главным образам Кертиса вновь стала оживать старая концепция островных вселенных. Но когда в апреле 1920 года в Вашингтоне состоялся знаменитый диспут между Шепли и Кертисом о природе спиральных туманностей, ни одна из сторон не могла одержать убедительной победы: не хватало прямых наблюдательных аргументов. Спустя всего четыре с небольшим года их представил Хаббл.

На фотоснимках, полученных Хабблом с 2,5-метровым рефлектором обсерватории Маунт Вилсон в Калифорнии 24 августа 1925 года отчетливо разложились на звезды внешние части трех ярких туманностей. Еще более ценным было то, что среди этих звезд он обнаружил цефеиды - переменные звезды хотя и меньшей, чем у новых звезд, но также громадной светимости, которую можно было более уверено определить по известному для этих звезд закону «период - светимость». Сравнив истинную светимость звезд с видимой, Хаббл по известной в астрофизике формуле, связывающей эти величины с расстоянием звезды, впервые получило убедительные значения для расстояний до самих звездных систем. Спиральные туманности оказывались далеко за пределами нашей галактики. По своим размерам эти туманности были сравнимы с нашей галактикой.

На основании первых наблюдений преобладания красных смещений в спектрах далеких галактик, еще до установления линейного закона «красного смещения» бельгийский астроном Ж. Леметр (1894-1966), независимо от А.А. Фридмана, выдвинул в 1927 году свою знаменитую идею возникновения Вселенной из одного «атома-отца» и ее расширения. В такой форме гипотеза была весьма удобной для религиозного истолкования природы и встретила поэтому резко критическое отношение со стороны философов-материалистов. Вместе с тем она соответствовала непосредственным наблюдениям и гармонировала с новой релятивистской физической картиной мира и поэтому привлекала внимание крупных физиков и астрономов, развивающих астрономические следствия релятивизма - А.С. Эддингтона и Э.А. Милна, хотя и по-разному понимавших сам релятивизм. В 30-е годы концепция Леметра была развита Эддингтоном как модель расширения Вселенной из первоначального плотного сгустка обычного вещества. Тогда же Милн, опираясь на собственную «кинематическую теорию относительности», дал свою интерпретацию разбегания галактик как результата взрывы сверхплотного сгустка некой особой «первичной» материи, из которой «на ходу» формировались затем звезды, галактики, планеты.

Как видно из вышеприведенных фактов, еще в XVIII веке в рамках гравитационной Ньютоновской картины мира возникло два направления в объяснении происхождения Солнечной системы: как чрезвычайно редкого, почти случайного или как закономерного, почти неизбежного процесса. Несмотря на выяснившуюся позже не состоятельность обеих концепций в существенных деталях, каждая содержала отдельные плодотворные идеи, которые не раз использовали в дальнейшем и вновь используются в наши дни.

О первой вспомнили, когда столкнулись в конце XIX века с неустранимым на основе механики пороком гипотез Канта и Лапласа: распределение в Солнечной системе момента количества движения, обратное распределению в ней масс, необъяснимо в этих механических гипотезах, что делало идею о единой родительской туманности Солнца и планет противоречащей одному из основных принципов механики.

После первого шага Лапласа и до недавнего времени никто не пытался увязать между собой процессы плането-и звездообразования. Учитывали только общий вывод о времени жизни звезд. Представления об этом сильно менялось с самого начала их научного обсуждения в середине XIX века и вплоть до наших дней.

С 60-х годов XX века было обращено внимание на необходимость объединенного исследования проблем планетной и звездной космогонии и более детального учета многоаспектности космогонического процесса: учета данных не только небесной механики, астрофизики, геологии, но и других наук о Земле, а главное, метеоритики, не говоря уже о ядерной физике, магнитогидродинамике и тому подобное. Именно эти две тенденции стали в наши дни определяющими в космогонических исследованиях, где сейчас работают многие десятки специалистов.

Совершенно новый стимул развитию планетной космогонии дают современные исследования вещества метеоритов, главным образом космогонические исследования (изучение изотопного состава, выявление короткоживущих изотопов, позволяющих раскрыть историю метеорита в космосе).

До третьего десятилетия XX века астрономическая картина мира сформировалась, опираясь исключительно на информацию, полученную путем наблюдений в оптическом диапазоне спектра. Все объекты во Вселенной хотя и считались эволюционирующими, но чрезвычайно медленно. Кратковременные процессы с выделением больших количеств энергии - взрывы сверхновых и новых звезд представлялись если не случайными, то редкими.


Страница: