Переход от электро-магнитной теории к специальной теории относительности
Рефераты >> Естествознание >> Переход от электро-магнитной теории к специальной теории относительности

Среди систем отсчета выделяют инерциальные, особенность которых состоит в том, что для них выполняется прин­цип относительности движения.

Принцип относительности движения означает, что во всех инерциальных системах отсчета механические процессы ин­вариантны. Иначе говоря, два наблюдателя в одной и другой инерциальной системе отсчета увидят, что в их системах фи­зические процессы протекают одинаково. Это означает также, что переход от одной инерциальной системы отсчета к другой осуществляется по правилам галилеевых преобразований, рассмотренных выше. И наоборот, если при переходе от одной системы отсчета к другой правила галилеевых пре­образований не выполняются, то и принцип относительности движения не выполняется, поэтому такие системы отсчета не будут инерциальными. Таким смыслом наполнен принцип относительности движения в классической механике.

Эйнштейн был тонким мыслителем, он всегда стремился максимально упорядочить логическую структуру физических теорий. Физики-теоретики того вре­мени, включая Эйнштейна, стремились теоретически и ло­гически упорядочить электродинамику Максвелла. В итоге таких усилий возникли новые теории специальная и общая теория относительности Эйнштейна.

Теории электромагнитного поля Максвелла были присущи два недостатка:

1. Она не совмещалась с принципом относительно­сти движения классической физики, поскольку ее урав­нения оказались неинвариантными относительно пре­образований Галилея. Это был существенный изъян, поскольку вся практика подтверждала и подтверждает этот принцип, и никакая теория не опровергает его.

2. Полевая картина физической реальности Макс­велла оказалась теоретически неполной и логически противоречивой, так как трактовка электрического по­ля и электрически заряженных частиц (носителей поля) не была увязана концептуально. Эйнштейн отмечал: тео­рия Максвелла хотя и правильно описывает поведение электрически заряженных частиц, но не дает теории этих частиц. Следовательно, они должны рассматриваться на основе классической механики как материальные точ­ки, расположенные в пространстве дискретно, что про­тиворечит понятию поля. Последовательная полевая теория требует непрерывности всех элементов теории. [2]

Решение этого вопроса, данное Эйнштейном, оригинально и поучительно. Объектом изучения в классической механике были или материальные точки, или точки пространства, или моменты времени. Он отвергает все эти разделительные «или».

Объектом теории относительности выступают «физические со­бытия» как целостные объекты, в которых объединены по­нятия материи, движения, пространства, времени. Физической реальностью, отмечал Эйнштейн, обладают не точки прост­ранства и не моменты времени, а только сами события, опре­деленные четырьмя числами х, у, z, t. «Законы природы при­мут наиболее удовлетворительный с точки зрения логики вид, будучи выражены как законы в четырехмерном пространст­венно-временном континууме» [4].

Остановимся теперь на рассмотрении первого не­достатка. Анализ показал, что уравнения Максвелла неинвариантны относительно галилеевых преобразо­ваний. Это значит, что при переходе от одной инерциальной системы отсчета к другой форма уравнений оказывалась разной. Это равносильно тому, что в раз­ных системах отсчета один и тот же физический процесс осуществлялся по разным законам, что противоречит науке. Как же уберечь теорию Максвелла от этого не­достатка?

В 1890 году Г. Герц искусственно подобрал систему урав­нений, инвариантных относительно галилеевых преобразо­ваний, которые в частном случае покоящегося тела обраща­ются в уравнения Максвелла. Однако уравнения Герца про­тиворечили опытно установленному постоянству скорости света (300 000 км/с).

Еще один вариант переработки уравнений Максвола предпринял голландский физик-теоретик Г.Лоренц, но и его уравнения оказались неинвариантными относительно галилеевых преобразований.

И тогда поступили, как в той известной притче: «Ес­ли гора не идет к Магомеду, то Магомед идет к горе» Поскольку не удалось переформулировать уравнения Максвелла так, чтобы они стали инвариантными относительно галилеевых преобразований, то Лоренц предпринял обратный ход: решил сами правила галилеевых преобразо­ваний видоизменить (проще говоря, подогнать) так, чтобы относительно этих правил уравнения Максвелла оказались инвариантными.

Лоренцевы преобразования - это новые (отличные от га­лилеевых) правила перехода от одной инерциалыюй системы отсчета к другой. Для одной точки в декартовой системе координат без штрихов при переходе к системе отсчета со штрихами лоренцевы преобразования устанавливают сле­дующие правила:

Как видим, отличие правил лоренцевых преобразований от галилеевых существенно. Это отличие станет еще более зримым, если определять не координату материальной точки, а размер макроскопического тела, например, жесткого стерж­ня длиной l. Такой стержень имеет начальную и конечную точки на оси х1, х. Определив координаты этих точек и вычитая из координаты с большим значением координату с меньшим значением, получим математическое выражение для длины (l) и для времени (t) движущегося стержня:

Здесь l-длина движущегося стержня, l0 - длина покоящеюся стержня, v - скорость движения стержня (системы отсчета), t - время покоящегося стержня, t0 - время движущегося стерж­ня, с - скорость света в пустоте. [2]

Рассмотрим соотношения l и t сначала формально. При малых значениях величины v, по сравнению со скоростью света, значением дроби и подкоренного выражения можно пре­небречь. Тогда l = l0 и t = t0, что равносильно возврату от лоренцевых преобразований к галилеевым. Если же значения величины v достаточно большие (сравнимые со скоростью света), то значением подкоренного выражения нельзя пре­небречь и оно будет уменьшаться. Соответственно этому значение величины l будет уменьшаться, а значение величи­ны t - возрастать. В таком случае с ростом скорости движе­ния (v) различия между преобразованиями Лоренца и пре­образованиями Галилея будут нарастать.

Итак, Лоренц искусственно получил новые правила перехода от одной инсрпиалыюй системы к другой. При этом уравнения Максвелла оказываются инвариант­ными в любых инерциальных системах отсчета. Одна­ко неизвестной остается реальность самих преобразо­ваний Лоренца: имеют они физический смысл или пег? Поскольку эти правила получены искусственно, то сам Лоренц отказывался придавать им физический смысл. Над ним довлели представления классической физики о неизменности пространства и времени. [3]

Иначе подошел к этому вопросу А. Эйнштейн. За фактом хорошей согласованности лоренцевых преобразований с теорией Максвелла он угадал реальный физический смысл самих преобразо­ваний. Для этого он предпринял попытку дедук­тивного построения теории, которая бы наполнила преобразования Лоренца физическим смыслом. Иначе говоря, он задался целью углубить пони­мание принципа относительности путем его раз­вертывания в теорию относительности.


Страница: