Основные квантово-механические принципы
Рефераты >> Естествознание >> Основные квантово-механические принципы

hvnm = |En – Em|

Рисунок 5.

Энергетические уровни атома и условное изображение процессов поглощения и испускания фотонов.

Второй постулат Бора также противоречит электродинамике Максвелла, так как частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона. Используя квантовую постоянную h, отражающую дуализм света, Н. Бор показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля.

Третий постулат Бора гласит: в стационарном состоянии электрон может двигаться только по такой ("разрешенной") орбите, радиус которой удовлетворяет условию:

mur = nh,

где ти - импульс с электрона, n - номер стационарного состояния (n = 1, 2, 3 .).

Теория Бора не отвергла полностью законы классической физики при описании поведения атомных систем. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда была дополнена в теории Бора идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.

2.4. Волновые свойства микрочастиц. Гипотеза де Бройля.

В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Л. де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

E = hv, p = mu = h/l

Гипотеза де Бройля основывалась на соображениях симметрии свойств материи и не имела в то время опытного подтверждения. Но она явилась мощным революционным толчком к развитию новых представлений о природе материальных объектов.

2.5. Дальнейшее развитие квантовой механики.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение молекулярной связи и т.д. "Полуклассическая" теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой. Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно. Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

2.6. Матричная механика. Работы Гейзенберга.

В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины - матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже). Большую роль в создании квантовой механики сыграли работы Дирака, относящиеся к этому же времени.

Окончательное формирование квантовой механики как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано «соотношение неопределённостей» - важнейшее соотношение, освещающее физический смысл уравнений квантовой механики, её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты квантовой механики. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга. В течение короткого времени квантовая механика была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие другие явления стали (по крайней мере качественно) понятными.

3. Основные квантово-механические принципы.

Поскольку законы квантовой механики не обладают той степенью наглядности, которая свойственна законам классической механики, целесообразно проследить линию развития идей, составляющих её фундамент, и только после этого сформулировать её основные положения. Выбор фактов, на основе которых строится теория, конечно, не единствен поскольку квантовая механика описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.

3.1. Волны и вероятности.

Рассмотрим простейший опыт по распространению света. На пути пучка света ставится прозрачная пластинка S. Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из "частиц" - фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (например, с пучком света крайне малой интенсивности), в котором можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. "цветность"). Оказывается, что некоторые фотоны проходят сквозь пластинку, а некоторые отражаются от нее. В чем причина этого? Может быть, имеется два разных сорта фотонов? Поставим контрольный опыт: внесем такую же пластинку на пути прошедшего света, который должен бы содержать только один из двух "сортов" фотонов. Однако будет наблюдаться та же картина: часть фотонов пройдет вторую пластинку, а часть отразится. Следовательно, одинаковые частицы в одинаковых условиях могут вести себя по-разному. А это означает, что поведение фотона при встрече с пластинкой непредсказуемо однозначно. Детерминизма в том смысле, как это понимается в классической механике, при движении фотонов не существует. Этот вывод является одним из отправных пунктов для устранения противоречия между корпускулярными и волновыми свойствами частиц и построения теории квантово-механических явлений. Задача отражения света от прозрачной пластинки не представляет какой-либо трудности для волновой теории: исходя из свойств пластинки, волновая оптика однозначно предсказывает отношение интенсивностей прошедшего и отражённого света. С корпускулярной точки зрения, интенсивность света пропорциональна числу фотонов. Обозначим через N общее число фотонов, через N1 и N2 - число прошедших и число отражённых фотонов (N1 + N2= N).Волновая оптика определяет отношение N1/N2, и о поведении одного фотона, естественно, ничего сказать нельзя. Отражение фотона от пластинки или прохождение через неё являются случайными событиями: некоторые фотоны проходят через пластинку, некоторые отражаются от неё, но при большом числе фотонов оказывается, что отношение N1/N2 находится в согласии с предсказанием волновой оптики. Фотон может с вероятностью w1пройти пластинку и с вероятностью w2 отразиться от неё. Рассмотренный опыт не специфичен для света. Аналогичные опыты с пучком электронов или др. микрочастиц также показывают непредсказуемость поведения отдельной частицы.


Страница: