Доказательство и его роль в науке и практике
Рефераты >> Логика >> Доказательство и его роль в науке и практике

СОДЕРЖАНИЕ

Введение

1. Структура доказательства _

2. Аргументация _

3. Виды доказательства _

4. Понятие опровержения.

5. Правила и ошибки встречающиеся в доказательстве и опровержении. _

5.1Правила и ошибки, относящиеся к тезису _

5.2Правила и ошибки, относящиеся к аргументам

5.3Правила к форме обоснованного тезиса (демонстрации) и ошибки в форме

доказательства

6. Понятие о софизмах и логических парадоксах

ЗАКЛЮЧЕНИЕ _ 14

ЛИТЕРАТУРА 15

Введение

Познание отдельных предметов, их свойств происходит посредством форм чувственного познания (ощущений и восприятий). Мы видим, что этот дом ещё не достроен, ощущаем вкус горького лекарства и так далее. Эти истины не подлежат особому доказательству, они очевидны.

Во многих случаях, например на лекции, в сочинении, в научной работе, в докладе, в ходе полемики, в судебных заседаниях, на защите диссертации и во многих других, приходится доказывать, обосновывать высказанные суждения.

Доказательность — важное качество правильного мышления.

Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждения. В науке ученым приходится доказывать самые разные суждения, например суждение о том, что существовало до нашей эры, к какому периоду относятся предметы, обнаруживаемые при археологических раскопках, об атмосфере планет Солнечной системы, о звездах и галактиках Вселенной, о теоремах математики, о направлении развития ЭВМ, об осуществлении долгосрочных прогнозов погоды, о тайнах Мирового океана и космоса. Все эти суждения должны быть научно обоснованны.

Доказательство - это совокупность логических приемов обоснования истинности какого-либо суждения с помощью других истинных и связанных с ним суждений.

Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данные науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере в догматы церкви, на предрассудках, на неосведомлённости людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Религиозные проповелники могут “убедить” какую-то часть людей в существовании якобы бога, ада, рая и так далее.

1.Структура доказательства

Основу доказательства составляют следующие положения:

1. Тезис.

2.Аргументы.

3.Демонстрация.

Тезис — это суждение, истинность которого надо доказать. Аргументы — это те истинные суждения, которыми пользуются при доказательстве тезиса. Формой доказательства, или демонстрацией, называется способ логической связи между тезисом и аргументами.

Существуют правила доказательного рассуждения. Нарушение этих правил ведет к ошибкам, относящимся к доказываемому тезису, аргументам или к самой форме доказательства.

2. Аргументация

Различают несколько видов аргументов

1. Удостоверенные единичные факты. К такогг рода аргументам относится так называемый фактический материал, то есть статистические данные о населении, территории государства, количестве вооружения, свидетельские показания, подписи лица на документе, научные данные научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, очень велика.

Как не совершенно крыло птицы,оно никогда не смогло бы поднять её в высь, не опираясь на воздух.

Факты - воздух ученого. Без них мы никогда не сможем взлететь. Без них наши теории - пустые потуги.

Но изучая, экспериментируя, наблюдая, старайтесь на оставаться на поверхности фактов. Не превращайтесь в архивариусов фактов. Пытайтесь проникнуть в тайну их возникновения. Настойчиво ищите законы ими управляющие.Ущё Мичурин сказал: “Мы не можем ждать милостей от природы; взять их у неё - наша задача”. Ценой десятков тысяч проведенных опытов, сбора научных фактов он создаёт свою стройную научную систему выведения новых сортов растений.

2.Определения как аргументы доказательства.

Определения понятий формулируются в каждой науке. Свои определения существуют в химии, математике, физике и так далее.

3.Аксиомы и постулаты.

В математике, механике, теоретической физике, математической логике и других науках кроме определений вводят аксиомы. Аксиомы - это суждения, которые принимаются в качестве аргументов без доказательства, так как они подтверждены многовековой практикой людей.

4.Ранее доказанные законы науки и теоремы как аргументы доказзательства.

В качестве аргументов доказательства могут выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики.

В ходе доказательства какого-либо тезиса может использоваться не один а несколько из перечисленных видов аргументов.

Следует особо подчеркнуть, что критерием истинности является практика. Если практика подтвердила истинность суждения, то дальнейшее доказательство не нужно. Практика - критерий истинности всякой теории.

3. Виды доказательства

Доказательства по форме делятся на прямые и непрямые (косвенные).

Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, то есть истинность доказательства непосредственно обосновывается аргументами. Схема этого доказательства такова: из данных аргументов (a,b,c .) необходимо следуют истинные суждения (k,m,l .), а из последних следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях.

На уроке обществоведения при прямом доказательстве тезиса “Народ - творец истории” учитель показывает, во-первых, что народ являетсясоздателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведёт активную борьбу за мир, в-третьих, раскрывает его роль в создании духовной культуры.

Непрямое (Косвенное) доказательство - это доказательство в котором истинность выдвинутого тезиса обосновывается путём доказательства ложности антитезиса. Оно применяется тогда когда нет аргументов для прямого доказательства. Антитезис может быть выражен в одной из двух форм:1)если тезис обозначить буквой а , то его отрицание (а) будет антитезисом, то есть противоречащим тезису суждением; 2) антитезисом для тезиса а в суждении а .в .с служат суждения .в и с .

В зависимости от этого различия в структуре антитезиса косвенные доказательства делятся на два вида - доказательство от “противного” (апагогическое) и разделительное доказательство (методом исключения).

Апагогическое косвенное доказательство (или доказательство “от противного”).

Осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике.


Страница: