Алгебра Дж. Буля и ее применение в теории и практике информатикиРефераты >> Математика >> Алгебра Дж. Буля и ее применение в теории и практике информатики
Существуют различные способы представления булевых величин (двоичных цифр) в виде тех или иных физических (обычно электрических) сигналов (высокое и низкое напряжение, импульсы тока разной полярности и т. п.).
Выбрав форму представления (двоичных) сигналов, можно построить элементарные устройства, называемые обычно логическими вентилями (или логическими элементами), которые реализуют элементарные булевы операции. Иными словами, выходные
сигналы этих устройств представляют собой элементарные булевы функции (результат выполнения элементарных булевых операций) от входных сигналов, как это показано на рис. 1.
Имея запас таких элементов, можно строить более сложные
х
|
|
y
|
|
y
| |||
x
схемы, подсоединяя выходы одних элементов к входам других. Если при таких соединениях избегать возникновения замкнутых контуров (например, подсоединения выхода элемента на один из его собственных входов), то возникает класс схем, называемых обычно комбинационными схемами. Такие схемы находятся в однозначном соответствии с формулами булевой алгебры, так что с их помощью может быть выражена любая система булевых функций. Например, схема, изображенная на рис. 2, реализует систему булевых функций
u = x /\ y \/ ù z и v = ù (x V y V z).
На практике построение комбинационных схем усложняется, поскольку сигналы при прохождении через вентили ослабляются, искажают свою первоначальную форму, запаздывают. Поэтому необходимо наряду с логическими элементами включать в схему различного рода согласующие элементы (усилители, формирователи сигналов и др.). Задача этих элементов—сделать схему работоспособной и надежной.
Из сказанного ясно, что можно построить комбинационную схему для решения любого конечного множества задач, решения которых однозначно определяются их условиями (подаваемыми на вход схемы). В частности, если ограничиться какой-либо фиксированной точностью представления вещественных чисел (разрядностью), то можно в принципе построить комбинационную схему, вычисляющую любую заданную вещественную функцию у = f(xi, ., xn) (в двоичных кодах).
На практике, однако, оказывается, что уже схема умножителя (вычисляющая функцию у = X1 • Х2) при разрядности (двоичной) 32 и более оказывается столь сложной, что умножение в современных ЭВМ предпочитают реализовать другим, так называемым алгоритмическим способом, о котором речь пойдет ниже.
В то же время многие, более простые функции, например функции сложения двух чисел, реализуются комбинационными схемами приемлемой сложности. Соответствующая схема носит наименование параллельного сумматора.
Следует заметить, что успехи микроэлектроники делают возможным построение все более сложных схем. Если еще в 60-е годы каждый логический элемент собирался из нескольких физических элементов (транзисторов, диодов, сопротивлений и др.), то уже к началу 80-х годов промышленностью выпускаются так называемые интегральные схемы, содержащие многие сотни и даже тысячи логических вентилей. При этом важно подчеркнуть, что не только сами логические элементы, но и соединения между ними (т. е. вся схема в целом) изготовляются одновременно в едином технологическом процессе на тонких пластинках химически чистого кремния и других веществ размерами в доли квадратного сантиметра. Благодаря этому резко уменьшилась стоимость изготовления схем и повысилась их надежность.
Обладая возможностью реализовать любые ф и к с и р о в а н н ы е зависимости между входными и выходными сигналами» комбинационные схемы неспособны обучаться, адаптироваться к изменяющимся условиям. На первый взгляд кажется, что такая адаптация обязательно требует структурных изменений в схеме,. т. е. изменения связей между ее элементами, а возможно, и состава этих элементов. Подобные изменения нетрудно реализовать путем механических переключении. Однако такой путь практически неприемлем из-за резкого ухудшения практически всех параметров схемы (быстродействия, габаритов, надежности и др.).
Существует гораздо более эффективный путь решения указанной проблемы, основанный па введении в схему в дополнение к уже перечисленным логическим элементам так называемых элементов памяти. Помимо своих входных и выходных сигналов, элемент памяти характеризуется еще третьим информационным параметром—так называемым состоянием этого элемента. Состояние элемента памяти может меняться (но не обязательно) лишь в заданные дискретные моменты времени t1,t2, . под влиянием сигналов, появляющихся на его входах в эти моменты. Наиболее употребительна так называемая синхронная организация работы элементов памяти, при которой моменты их возможных переключении (изменении состояния) следуют друг за другом через один и тот же фиксированный промежуток времени Dt = const, называемый тактом. Эти моменты определяются обычно с помощью импульсов, вырабатываемых специальным тактирующим синхрогенератором. Количество тактовых импульсов, выдаваемых им в течение одной секунды, называется тактовой частотой.