Энергетика геолого-геофизических процессов: оценка вклада радиогенной, гравигенной и др.видов энергии в общий энергетический баланс
Процессы трансформации представляют собой работу деформаций скалывания и сжатия (растяжения), а также работу фазовых и физико-химических преобразований вещества. Часть этой энергии, непосредственно преобразующейся в тепло, затем теряется Землей, а другая часть аккумулируется, переходит в так называемый латентный запас. Этот запас тоже может выделиться при изменении геологических условий.
Деформации скалывающего типа реализуются в виде пластического течения и нарушения сплошности среды, оро- и эпейрогенеза, складчатости, т.е. практически всех типов тектонических деформаций. В процессе этих деформаций питающая их энергия частично переходит в свободную энергию возникающих поверхностей разрыва, частично - в скрытую теплоту образования в разломных зонах новых минералов, например руд. Главный же вид трансформации - это переход энергии в тепло тектонического трения (фрикционное тепло). Фрикционное тепло не может вызвать тектонические движения, но является их обязательным следствием и вызывает нагревание и даже плавление твердых земных пород. Некоторые исследователи придавали фрикционному теплу главную роль как энергетическому источнику тектонических процессов. Однако следует помнить, что этот вид тепла является лишь реакцией на деформацию земных масс, происходящую под действием первичного тепловыделения.
Самый яркий вид реакции земных масс на напряжения - это землетрясения. Почти вся энергия землетрясений выделяется в верхних 100 км Земли, т.е. в тонкой "поверхностной пленке". Упругие сейсмические колебания постепенно затухают, вызывая нагревание поглощающей пластичной среды и трение во вновь образующихся разломах. Оба эти эффекта вызывают некоторое увеличение теплового потока через поверхность Земли, что учитывается в балансовых расчетах.
Энергетический эффект сейсмической деятельности проявляется неравномерно в пространстве и во времени. Мы хорошо знаем, что 95% этой энергии выделяется в двух подвижных поясах Земли: в Тихоокеанском и Альпийско-Гималайском, занимающих лишь 5% территории планеты. Средняя мощность сейсмических явлений на протяжении длительного геологического периода на несколько порядков ниже, чем в течение отдельных отрезков времени. Поэтому оценки эффекта сейсмичности на основании инструментальных наблюдений за исторический период, составляющие от 3·1017 (Б.Гутенберг и К.Рихтер) до 1019 Дж/год (Л.Кнопофф), могут быть сильно завышенными и не должны безоговорочно включаться в геоэнергетический баланс.
Такая же резкая пространственно-временная изменчивость характеризует и энергетический эффект процесса складкообразования в земной коре. Изучая его методами физического моделирования, М.В.Гзовский и А.В.Михайлова установили, что 75% общего эффекта этого процесса связано с пластической деформацией горных пород, т.е. расходуется на необратимые изменения формы и объема геологических тел. Оценки расхода энергии этого вида на основании плиоцен-четвертичных тектонических процессов составляют 1,8·1017 Дж/год, причем 90% этого эффекта реализуются в подвижных кайнозойских геосинклиналях.
Мы должны понимать, что количественная оценка энергетического эффекта скалывающих деформаций за всю историю Земли невозможна. Можно, однако, утверждать, что этот вид трансформаций вносит малый вклад в наблюдаемый тепловой поток.
Работа фазовых и химических превращений земного вещества, направленная на увеличение его плотности, совершается главным образом за счет гравигенной энергии. По-видимому, с этими процессами связано существование поверхности Мохоровичича, волновода на глубинах 400-1000 км в верхней мантии и границы между ядром и мантией. Природа этих переходов сейчас еще не ясна. Существует на этот счет несколько мнений: о переходе силикатов в металлическую фазу (гипотеза Лодочникова-Рамзая), о восстановлении окислов железа углеродом (Дж. Ирияма), о фазовых полиморфных переходах на границах волновода и Мохо (В.А.Магницкий).
Количественные оценки затрат энергии на формирование глубинных геосфер оцениваются в (1,6-2,2)·1031 Дж. К той же группе процессов относятся физико-химические преобразования в земной коре: метаморфизм и гипергенез. Прогрессивный метаморфизм является эндотермическим процессом, и, следовательно, увеличивает скрытый резерв внутренней энергии. Такую же роль играют и процессы седиментогенеза, в ходе которых в осадках аккумулируется солнечная энергия. Однако удельный эффект метаморфизма и седиментогенеза сравнительно мал. Он не превышает 105 Дж/кг, что выражается величинами плотности теплового потока в десятые или даже сотые доли мВт/м2. Напротив, процессы гипергенеза - окисление, гидратация, растворение и гидролиз - имеют экзотермическую направленность и характеризуются теми же величинами в энергетических единицах, т.е. обеспечивают переход резерва энергии в подвижную часть энергетического баланса. То же происходит при переплавлении метаморфизованных толщ или при их регрессивном метаморфизме.
Промежуточной формой трансформации внутренней энергии является современное теплосодержание Земли, т.е. запас тепла в ее различных геосферах. Суммируя вклад всех указанных процессов, получаем огромную величину скрытого резерва внутренней энергии Земли - 9·1031 Дж, что в три раза превышает оценку суммарной генерации. Такое расхождение говорит о необходимости переоценки роли и генерации тепла и теплосодержания в скрытых формах.
Расходная часть энергетического баланса поддается непосредственному измерению, так как состоит из двух видов потери Землей ее внутренней энергии: в виде кондуктивного теплового потока через поверхность Земли и в виде конвективного выноса тепла при вулканизме и гидротермальной деятельности. Эти два важнейших геотермических процесса мы будем ниже обсуждать очень подробно, пока же в рамках энергетического баланса подсчитаем величину общих теплопотерь Земли.
Распределение кондуктивного теплового потока на поверхности земного шара крайне неравномерно, но мы вправе для балансовых расчетов оперировать средней его величиной. По последним оценкам он составляет 56 и 78 мВт/м2, соответственно, для континентов и океанов. Таким образом, полный вынос энергии кондуктивным путем оценивается величиной 3,1·1013 Вт, или 1021 Дж/год. За весь геологический период развития Земли планета отдала в мировое пространство 0,45·1031 Дж. В отличие от кондуктивного теплового потока конвективный вынос локализуется в ограниченной части земной поверхности - в вулканических областях переходных зон и в рифтовых зонах континентов и океанов. После открытия глобальной системы срединно-океанических хребтов протяженностью 60000 км пришлось пересмотреть прежние оценки роли конвективного выноса тепла из земных недр, так как практически во всех хребтах из их центральных долин происходит разгрузка магмы и термальных вод.
По расчетам Б.Г.Поляка, вынос тепла вулканизмом суши оценивается в (0,38-13,2)·1018 Дж/год, гидротермами суши - (1,9-2,8)·1018 и срединно-океаническими хребтами - (0,44-3,46)·1018 Дж/год. Эти оценки мощности, однако, не дают возможности оценить общие конвективные теплопотери за геологический период существования планеты, так как конвективная мощность менялась во времени - периоды резкого возрастания вулканизма сменялись периодами относительной пассивности; то же можно, вероятно, сказать и о гидротермальной деятельности. Из этих соображений при подсчете общих теплопотерь оперируют их мощностью. Оценки показывают, что мощность кондуктивного выноса на два порядка больше, чем мощность конвекции. Таким образом, можно рассчитать мощность суммарных теплопотерь Земли. Она равна 4,2·1013 Вт, или 1,3·1021 Дж/год, что приблизительно дает величину »0,5·1031 Дж. Эта цифра существенно ниже, чем общее энерговыделение в Земле за всю ее историю и в три раза ниже современного теплосодержания. Из этого следует, что наша планета еще очень далека от "тепловой смерти".