Анализ обеспечивающих подсистем системы управления
Рефераты >> Менеджмент >> Анализ обеспечивающих подсистем системы управления

Для фиксированных по составу и содержанию информационных потоков в объекте автоматизации, постоянном составе и взаимодействии элементов АСУ и алгоритмах задач структура потоков информации в системе будет в общем случае неизменна. Последовательности и взаимосвязи определяемых структурных компонентов потоков постоянны и могут быть найдены один раз. Для автоматизации процесса анализа информационных потоков необходимо создать соответствующую информационную модель. С этой целью удобно воспользоваться аппаратом теории графов [7, c. 20].

3.2. Построение графической модели

Представим структурные компоненты потоков информации в виде вершин ориентированного графа G=(M,V), дуги которых отражают их связи между собой. Каждая пара вершин Mi и Mj соединена дугой, направленной от Mi к Mj только в том случае, если есть переход информации от Mi к Mj.

Используя свойства графов, можно получить ряд важных характеристик исследуемых потоков информации в системе.

Образуем степенные матрицы смежности R, R2,…,RN и суммарную матрицу R=SNn=1 Rn . Анализ матриц позволяет установить следующие свойства потоков. Порядок компоненты Mj определяется наибольшей длиной пути, соединяющего Mi с Mj. Он равен степени n матрицы смежности Rn при которой Sirj=0. Максимальное значение порядка компоненты Mj определяется наибольший путь от Mi к Mj для всего информационного графа. Исходные данные выделяются при равенстве нулю суммы элементов j столбца матрицы смежности. При равенстве нулю суммы элементов i строки выделяются выходные данные. Значения Si rj >0 и Sj ri>0 равны числу компонентов, соответственно входящих в Mj, и числу результатов, в которые входит Mi. Элемент rij матрицы смежности степени n равен числу путей длиной n, связывающих Mi и Mj. Элементы rij матрицы Rсум дают полное число всех путей от Mi к Mj без укзания длины пути.

Элементы j столбца не равные нулю матрицы Rсум , не равные нулю, позволяют выявить все компоненты, формирующие Mj на всех путях движения данных. Отличные от нуля элементы i строки указывают на результаты в формировании которых используется элемент Mi.

Используя матрицу смежности R и значение порядка можно определить длительность хранения компонентов, являющихся промежуточными по отношению к выходным.

Алгоритм анализа потоков информации представлен в общем виде в приложении 9. Модифицируя алгоритм, можно получить практически все характеристики по взаимодействию элементов в модели АСУ. Фрагмент реальной модели, иллюстрирующей объем и сложность взаимосвязей элементов системы, приведен в приложении 10. Для наглядности в него включены только отдельные массивы информации, и функциональные задачи. По этой причине на фрагменте выделены некоторые из наиболее существенных связей между элементами по входной и выходной информации.

Информационные графы и соответствующие им матрицы смежности можно использовать для определения объемов информации по задачам, группам задач, подсистемам, системе в целом и по любым другим структурным компонентам графа [7, c. 20 – 22].

3.3. Анализ матрицы информационного графа

Как было показано выше объемы данных, вводимые в систему довольно велики, поэтому эффективная их организация на машинном уровне является актуальной. Анализ информации для получения исходных данных с целью построения или реконструкции созданного информационного фонда удобно проводить на рассмотренной графовой модели в рамках единого алгоритма анализа. Рекомендуется проанализировать следующие взаимосвязи:

- выявить число задач, в которых используется данный показатель. По этой информации рассчитывается коэффициент дублирования данных в случае организации отдельных массивов с исходными данными для каждой задачи;

- рассчитать матрицу совместной встречаемости пар показателей в задачах, элементы которой показывают число задач, в которых соответствующие показатели используются совместно. Такие показатели можно объединить и использовать в общем для них информационном массиве единого информационного фонда;

- определить число и перечень задач, в которых данный показатель встречается совместно с другими показателями, а также число и перечень показателей. Это позволит выявить группы показателей, которые используются только совместно и не используются порознь ни в одной задаче.

Процесс группировки показателей по задачам можно формализовать, вводя в рассмотрение коэффициент связи между группами. Коэффициент связи вычисляют по следующей формуле:

где: - число общих показателей для задачи с индексами и ; - число показателей, используемых в задаче с индексом ; - число показателей, используемых в задаче с индексом .

Группировка показателей заключается в следующем. Рассчитывают и заполняют матрицу связи групп исходных показателей задачи. Выбирают максимальный коэффициент связи и группы соответствующих ему показателей объединяют в единую группу P. Определяют коэффициент связи новой группы со всеми другими группами и объединяют с группой Р группу показателей, у которой коэффициент связи с ней максимален.

Группировкой можно управлять, задавая предельное значение коэффициента связи. Это приводит к изменению коэффициента дублирования показателей.

Окончательный выбор той или иной степени группировки определяют при разработке логической структуры единого информационного фонда системы.

В далее следующем примере приведены закодированные задачи и закодированные показатели на основе которых продемонстрирована методика расчета коэффициента связи между группами показателей.

Коэффициент связи групп показателей для задач и

К==0,67;

коэффициент связи групп показателей для задач и

К==1;

коэффициент связи групп показателей для задач и

К==0,67.


Страница: