Анализ инвестиционных проектов
Рефераты >> Экономика >> Анализ инвестиционных проектов

В-пятых, поскольку у = f(r) нелинейна, критерий IRR не обладает свойством аддитивности.

На практике любое коммерческая организация финансирует свою деятельность, и в том числе инвестиционную, из различных источников. При этом за пользование финансовыми ресурсами она уплачивает проценты, дивиденды, вознаграждения и т.п. Показатель, характеризующий относительный уровень этих расходов, называется средневзвешенной ценой капитала (Weighted Average Cost of Capital, WACC). Он отражает минимальную требуемую рентабельность капитала организации и рассчитывается по формуле средней арифметической взвешенной

n

WACC = å kj × dj,

j=1

где kj - цена j-го источника средств; dj- удельный вес j-го источника средств в общем их объеме.

Экономический смысл критерия IRR заключается в следующем: IRR показывает максимально допустимый относительный уровень расходов по проекту. В то же время предприятие может реализовывать любые инвестиционные проекты, уровень рентабельности которых не ниже текущего значения показателя цены капитала (Cost of Capital, СС). Под последним понимается либо WACC, если источник средств точно не идентифицирован, либо цена целевого источника, если таковой имеется. Именно с показателем СС сравнивается критерий IRR, рассчитанный для конкретного проекта. При этом если: IRR > CC, то проект следует принять; IRR < CC, то проект следует отвергнуть; IRR = CC, то проект не является ни прибыльным, ни убыточным. При прочих равных условиях большее значение IRR считается предпочтительным.

Наиболее часто для расчета IRR применяется метод последовательных итераций с использованием табулированных значений дисконтирующих множителей. При этом сначала с помощью таблиц выбирают два значения коэффициента дисконтирования r1 < r2 таким образом, чтобы в интервале (r1, r2) функция NPV = f(r) меняла свое значение с "+" на "-" или с "-" на "+". Далее используют формулу

f(r1)

IRR = r1 + ¾¾¾¾¾¾ (r2 - r1), (5)

f(r1) - f(r2)

где r1 - значение табулированного коэффициента дисконтирования, при котором f(r1) > 0 (f(r1) < 0);

r2 - значение табулированного коэффициента дисконтирования, при котором f(r2) < 0 (f(r2) > 0).

Точность вычислений обратно пропорциональна длине интервала (r1, r2), а наилучший результат с использованием табулированных значений достигается в случае, когда длина интервала минимальна (равна 1%), т.е. r1 и r2 ближайшие друг к другу значения коэффициента дисконтирования, удовлетворяющие условиям (в случае изменения знака функции у = f(r) с "+" на "-"):

r1 - значение табулированного коэффициента дисконтирования, минимизирующее положительное значение показателя NPV, т. е. f(r1) = min{f(r) > 0};

r

r2 - значение табулированного коэффициента дисконтирования, максимизирующее отрицательное значение показателя NРV, т.е. f(r2) = max {f(r) < 0}.

r

Путем взаимной замены коэффициентов r1 и r2 аналогичные условия выписываются для ситуации, когда функция меняет знак с "-" на "+".

Пример B

Требуется рассчитать значение показателя IRR для проекта со сроком реализации 3 года: (в млн руб.) - 10, 3, 4, 7.

Возьмем два произвольных значения коэффициента дисконтирования: r = 10%, r = 20%. Соответствующие расчеты с использованием табулированных значений приведены в таблице 1.

Год

Поток

Расчет 1

Расчет 2

Расчет 3

Расчет 4

r=10%

PV

r=20%

PV

r=16%

PV

r=17%

PV

0

-10

1,000

-10,00

1,000

-10,00

1,000

-10,00

1,000

-10,00

1

3

0,909

2,73

0,833

2,50

,862

2,59

0,855

2,57

2

4

0,826

3,30

0,694

2,78

0,743

2,97

0,731

2,92

3

7

0,751

5,26

0,579

4,05

0,641

4,49

0,624

4,37

1,29

-0,67

0,05

-0,14


Страница: