Монетаризм - версии экономического роста и взгляд на роль государства
Рефераты >> Экономическая география >> Монетаризм - версии экономического роста и взгляд на роль государства

2.Монетаристские модели экономического роста

Монетаристские неоклассические модели экономического роста строятся на базе производственной функции и основаны на предпосылках полной занятости, гиб­кости цен на всех рынках, а также полной взаимозаменяемости факторов производства. Попытки исследовать, в какой степени качество факторов производства и различные пропорции в их сочетании воздействуют на экономический рост, привели к созданию модели производственной функции Кобба-Дугласа. Рассмотрим эту модель подробнее.

2.1.Производственная функция Кобба-Дугласа и ее свойства.

Функция Кобба-Дугласа получена в результате математического преобразования простейшей производной функции У= F(L, К) в такую мо­дель, которая показывает, какой долей совокупного продукта вознагражда­ется участвующий в его создании фактор производства. Она имеет следую­щий вид:

Y = АКаLb

где а изменяется в пределах в пределах от 0 до 1, a b = 1 - а

Функция Кобба-Дугласа - модель с двумя переменными факторами производства. Параметр А - коэффициент, отражающий уровень техно­логической производительности и в краткосрочном периоде он не изме­няется. Показатели а и b - коэффициенты эластичности объема выпус­ка (Y) по фактору производства, т. е. по капиталу К и труду L соответ­ственно. При этом если каждый из факторов оплачивается в соответ­ствии со своим предельным продуктом, то а и b показывают доли капи­тала и труда в совокупном доходе. Иными словами, если цена капита­ла равна предельному продукту капитала, а цена труда равна предель­ному продукту труда, то параметры а и b определяют пропорцию, в ко­торой труд и капитал получают свое вознаграждение за созданный про­дукт, т. е. долю капитала в доходе aY и долю труда в доходе bY. Так как b = 1 - а, то а +b = 1 , из чего следует, что мы имеем дело с постоянной отдачей от масштаба. Интересно рассмотреть эмпирические значения параметров функции Кобба-Дугласа: А = 1,1; а = 1/4; b = 3/4. Следовательно, доля капитала в национальном доходе составляет 25%, а доля тру­да - 75%.

В поисках путей наибольшей эффективности производства нас всегда должна интересовать предельная производительность участвующих в нем факторов, с помощью которой определяется оптимальный объем исполь­зуемых ресурсов. Предельный продукт капитала в МРК пропорционален от­ношению доли капитала в доходе к объему использованного капитала: МРК = аY/К. Аналогично определяется и предельная производительность труда: MPL = bY/L

Рассмотрим свойства производственной функции Кобба-Дугласа.

Первое свойство - постоянство отдачи от масштаба - описывается формулой F(nK,nL) = п АКаLb и означает, что если увеличить использование капитала и труда в n раз, то объём совокупного спроса, или объём дохода, возрастает в такое же число раз.

Второе важное свойство функции Кобба-Дугласа связано с изменением предельной производительности факторов. Например, если привлечь в производство дополнительное количество капитала К, а труд L использовать в прежнем объёме, то, при прочих равных условиях предельная производительность МРL , а производительность возросшего объема капитала МРК снизится. Если же увеличить количество труда, при прочих равных условиях, то его предельная производительность снизится, а предельная производительность капитала возрастёт. Вывод: нарушение пропорций между трудом и капиталом при заданной технологии приводит к отклонению от оптимального объёма производства, т. е. к неэффективности производства и означает, что если увеличить использова­ние капитала и труда в п раз, то объем совокупного выпуска, или объем до­хода, возрастет в такое же число раз.

Однако, если мы увеличим параметр А, например, внедрив более производительную технологию, то получим одновременное увеличение МР и МР, что является условием интенсивного экономического роста.

Третье свойство производственной функции Кобба-Дугласа - постоян­ство отношения дохода от труда к доходу от капитала (b /а), т. е. посто­янство соотношения долей капитала и труда в национальном продукте.

Исследования американского сенатора и экономиста Пола Дугласа по­казали, что в Соединенных Штатах за сорок лет (с 1948 по 1989 гг.) соот­ношение b/а колебалось в пределах между 2 и 32, в результате чего оплата труда в 2-3 раза превышала вознаграждение капитала. Можно предполо­жить, что постоянные рамки колебания соотношения b/а заданы техноло­гически. Колебания b/а внутри этих рамок могут быть объяснены откло­нением в соотношении I и S, так как вряд ли заработная плата, шкала на­логообложения и нормы амортизации почти ежегодно могли претерпевать значительные изменения.

Макроэкономическое равенство I = S лежит в основе механизма эконо­мического роста еще одной неоклассической модели, которая также бази­руется на производственной функции. Она называется моделью роста Солоу, по имени американского экономиста, лауреата Нобелевской премии Роберта Солоу.

2.2.Модель роста Солоу.

Цель данной модели – ответить на три важных вопроса экономической политики: как добиться высоких и стабильных темпов роста, как одновременно с этим найти максимальный объем потребления, и какое влияние на экономический рост оказывает увеличение населения и внедрение новых технологий.

Построение модели. Разделив двухфакторную производственную функ­цию Y=F(K,L) на количество труда L, мы получим производственную функцию для одного человека: у = (k), где k = K/L – уровень капиталовооружённости единицы труда. Доход предстаёт как функция только одного фактора капиталовооружённости. Такая единичная производственная функ­ция изображена на рис. 1

Рисунок 1

В данной функции предельная производительность капитала МР измеряется постоянно изменяющимся углом наклона кривой у = и показывает прирост выпуска, если капиталовооружённость работника возрастёт на 1 единицу, т. е.

В модели Солоу спрос на продукцию предъявляется со стороны потре­бителей и инвесторов. Производственные блага в условиях равновесия полностью инвестируются (S = I), не оставляя места накоплению товарно материальных запасов. Помня о макроэкономическом равенстве У = С + I, выпуск одного работника можно записать в виде у = с + i; функцию по­требления как с ={l-s)y = (1-s) , а функцию инвестиции на одного работника как i = sy = s

Графический размер потребления и инвестиций при каждом уровне капиталовооружённости изображены на рис.1. Линией обозначена функция инвестиций. Расстояние между функциями и определяет объём потребления. На этом основании функция потребления выглядит как:

Важное место в модели Солоу занимает рассмотрение движения капи­тальных запасов, величина которых составляет разницу между размером инвестиций и объемом выбытия капитала: , где норма выбытия капитала (или норма амортизации) и является константой, а - объём выбытия капитала.

В ходе производства ежегодно пополняются капитальные запасы, неза­висимо да того, с каким объемом капитала экономика начинает развиваться. Однако прирост капитала идет затухающими темпами. Это объясняется уже рассмотренным выше снижением предельной производительности капитала МР , происходящей по мере увеличения капиталово6руженности одного работника. Но при наращивании капиталовооруженности растет, и объем выбытия капитала. С ростом производства разница между инвести­циями и объемом выбытия будет уменьшаться до тех пор, пока эти величи­ны не выровняются между собой. Когда = 0, производство, инвестиции и выбытие капитала не могут продолжать свой рост и останавливаются на определенном устойчивом уровне. Экономика достигает равновесия. Уровень капиталовооруженности, при котором = 0, называется устойчи­вым уровнем капиталовооруженности ( ) и характеризует состояние равновесия экономики, отличающееся устойчивостью инвестиций и вы­бытия капитала, неизменностью объема производства. В условиях рав­новесия = 0 или


Страница: