Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Рефераты >> Авиация и космонавтика >> Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата

Известны также некоторые другие методы [1, 4, 23] описания конечного поворота твердого тела не тремя, а четырьмя параметрами: исследование параметров Родрига-Гамильтона, Кейли-Клейна, или с использованием кватернионов [1, 3, 6].

Интегрируя кинематические уравнения (3.3) в бортовой цифровой вычислительной машине (БЦВМ) при начальных значениях углов , и интегрируя уравнения движения центра масс КА при соответствующих начальных условиях, реализуют бесплатформенную инерциальную навигационную систему (БИНС). Таким образом, считаем, что текущие величины углов jj непрерывно вычисляются в БИНС [9, 12].

Характерной особенностью момента управления является активность, он появляется в результате включения вспомогательных органов (в частности реактивных двигателей стабилизации), и исчезает при их отключении. Момент Мупрj формируется в соответствии с логикой закона управления и обеспечивает заданное угловое положение КА [1, 8, 10].

Источником внешнего возмущающего момента Мвj, является взаимодействие КА с внешней средой, приводящее к появлению действующих на корпус внешних сил – гравитационного, аэродинамического, светового, магнитного [1, 3, 10, 12]. Момент имеет две составляющих – (создаваемую реактивными двигателями), и (создаваемым моментным магнитоприводом и др. Будем рассматривать только ) [1].

Важным свойством динамической системы ориентации является: если осями ориентации являются поступательно движущиеся оси, то при соответствующем законе управления вместо сложных пространственных поворотов космического аппарата можно изучать три независимых плоских угловых движения, что мы и сделаем в системе, т.е.:

(3.4)

получено три независимых уравнения.

Закон управления формируется путем сложения позиционного сигнала jj и скоростного сигнала wj, умноженного на коэффициент усиления kj (j=x, y, z):

. (3.5)

Усложним рассматриваемую модель. Для этого будем рассматривать ее как упругое тело [1, 3, 6-12]. Уравнения осцилляторов для упругой модели имеет вид:

(3.6)

где - коэффициент демпфирования для каждой отдельно взятой гармоники.

- квадрат собственной частоты не демпфированных колебаний для каждой гармоники.

- управляющий момент с учетом возможного отказа. i = 1,2,3,4. Коэффициенты мы берем из таблицы, приведенной в приложении А.

При нулевой правой части, мы получаем свободные колебания, зависящие от начальных отклонений, угловых скоростей и др. При ненулевой правой части мы получаем вынужденные колебания, которые накладываются на свободные колебания. Они являются затухающими со временем, в силу коэффициента демпфирования. Прототипом для данной упругой модели послужил маятник на пружинке. Рассматриваемая система является линейной [1].

3.2 Моменты внешних сил, действующие на космический аппарат

3.2.1 Аэродинамический момент

Взаимодействие корпуса [1, 3] движущегося с большой скоростью космического аппарата с разряженной атмосферой больших высот вызывает появление аэродинамических сил и моментов. Первые приводят главным образом к постепенному торможению космического аппарата и связанного с этим эволюции его орбиты, в конечном итоге приводящей к падению на поверхность планеты ее искусственных спутников. А вторые к появлению внешних моментов, иногда благотворно, а чаще неблаготворно сказывающихся на режимах ориентации.

Особенностью аэродинамического взаимодействия корпуса космического аппарата с внешней средой [1, 3] является то, что вследствие малой плотности среды длина свободного пробега молекул атмосферы не может считаться малой по сравнению с характерными линейными размерами корпуса космического аппарата. В результате соударение "отскочившей" от поверхности космического аппарата молекулы внешней среды с другой такой молекулой происходит на большом удалении от него, что позволяет считать, что каждая молекула атмосферы взаимодействует с корпусом космического аппарата независимо от других. Это приводит не к обычной в аэродинамике схеме обтекания тела сплошной среды, а к картине "бомбардировки" такого тела отдельными молекулами.

Взаимодействие молекул разряженной среды с поверхностью твердого тела мыслимо идеализировать двояким образом: либо как упругое соударение с мгновенным зеркальным отражением молекулы, либо считать, что при соударении молекула отдает всю свою энергию телу, приходит с ним в температурное равновесие, а затем выходит во внешнее пространство с тепловой скоростью. Поскольку тепловая скорость молекулы невелика по сравнению со скоростью движения космического аппарата, последнюю схему можно считать схемой абсолютно упругого удара. Вторая из приведенных схем значительно лучше описывает наблюдаемые на практике явления и поэтому кладется в основу расчетов. Однако фактически происходят как упругие, так и неупругие соударения, и в более тонких расчетах следует учитывать долю тех и других [1, 3, 6].

Если по аналогии с обычной аэродинамикой считать, что возникающие силы взаимодействия тела и среды пропорциональны скоростному напору

; (3.7)

где - плотность внешней среды, - относительная скорость тела и среды, то элементарная сила, действующая на площадку dS, будет:

; (3.8)

здесь - некоторый коэффициент, а - угол между внешней нормалью к элементарной площадке dS и вектором скорости этой площадки относительно внешней среды. Написанное соотно­шение является следствием закона сохранения импульса, и легко убедиться, что для абсолютно неупругого удара с=2.

Элементарный аэродинамический момент относительно центра масс


Страница: