Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата
Рефераты >> Авиация и космонавтика >> Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата

Функционирование СУО с набором начальных условий варианта 2 табл. 5.1 во временной плоскости представлено на рис. 5.1, рис. 5.2, рис. 5.3.

Функционирование СУО с набором начальных условий варианта 1-6 табл. 5.1 на фазовой плоскости, представлено в приложении Б.

.

Рис. 5.1 – Зависимость угловой скорости от времени в канале X

Рис. 5.2 – Зависимость углового ускорения от времени в канале X

Как показали результаты моделирования (рис. 5.1-5.3), разработанный алгоритм стабилизации при наличии внешних возмущающих воздействий показал высокую эффективность в режиме построения базовой ориентации. Как показало моделирование, наиболее эффективным методом гашения шумов управления, которые возникают в следствии «скольжения» управляющего воздействия по границе области нечувствительности, при реализации логики управления, оказалось введение паузы по времени при выходе из зоны нечувствительности для двигателей малой тяги и зоны нечувствительности двигателей большой тяги. Для более эффективного гашения шумов, а соответственно снижения расхода рабочего тела, были введены в модель упругого КА двигатели малой тяги, с дополнительной зоной нечувствительности в законе управления и дополнительной задержкой по времени. Для сравнения был рассмотрен гистерезис с фиксированной зоной нечувствительности для ДБТ и ДМТ. Эффективность применения меньше по сравнению с паузой по времени, в связи с фиксированной зоной нечувствительности для всего диапазона угловых скоростей.

Рис. 5.3 – Зависимость управляющего момента от времени в канале X

Проведем моделирование СУО с различными наборами коэффициентов фильтра Льюинбергера. Начальные условия модели КА возьмем из 2-ого варианта табл. 5.1. Варианты коэффициентов фильтра Льюинбергера, представлены в табл. 5.2.

Результаты моделирования представлены в приложении В. Как показали результаты моделирования – минимальную погрешность оценивания показал 4-ый вариант наборов коэффициентов фильтра Льюинбергера. Как видно из результатов моделирование, наиболее длительный по времени переходной процесс показал 1-ый набор коэффициентов табл. 5.2 (~40 сек.), последующие наборы, показали тенденцию существенного снижения времени переходного процесса, так 3-ий набор коэффициентов фильтра Льюинбергера, показал (~8 сек.), вместе с тем, такая же тенденция наблюдается и с максимальной погрешностью оценивания. Так для 1-ого набора коэффициентов она составила (~0.01 1/с) , то для 4-ого набора коэффициентов максимальная погрешность оценивания составила (~0.0005 1/c). Следует отметить, что все четыре набора коэффициентов фильтра, были выбраны из области устойчивости рис. 4.2.1. 4-ый набор коэффициентов был найден методом интегральной квадратичной оценки качества, и является наиболее оптимальным, как показали результаты моделирования, для данных НУ взятых из табл. 5.1.

Таблица 5.2 - Коэффициенты фильтра Льюинбергера

Вариант№

Набор коэффициентов

K1

K2

K3

1

0.9

0.27

0.027

2

3

3

1

3

6

12

8

4

20.516

149.611

0.042

.

5.1 Моделирование отказов ГИВУС

Рассмотрим модель гироскопического измерителя вектора угловой скорости, описанной в разделе 3.3 с учетом углов установки и дрейфа нуля.

Рассмотрим пять типов отказов, описанных в табл. 5.3 и проведем соответствующую диагностику отказов ГИВУС. Примем коэффициенты фильтра Льюинбергера постоянными. K1= 6, K2=12, K3= 8. Начальные условия моделируемой системы, представлены в табл. 5.4.

Таблица 5.3 - Описание отказов ГИВУС

Тип отказа

Описание отказа

1

Отсутствие выходной информации

2

Максимальная информация постоянного знака

3

Информация постоянного знака, кратная 750 импульсам

4

Максимальная информация с релейным чередованием знака

5

Увеличение (уменьшение) цены импульса в 4 раза

Таблица 5.4 - НУ модели КА

Вариант

Угловые скорости

Угловые ускорения

Моменты инерции

Типы отказов ГИВУС

Время отказа  

1

Wx = 0.5 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

700 сек

2

Wx = 1 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

700 сек

3

Wx = 4 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

700 сек

4

Wx = 4 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

100 сек

5

Wx = 4 c-1

Wy = 0 c-1

Wz = 0 c-1

Gx = 0 c-2

Gy = 0 c-2

Gz = 0 c-2

Ix = 500 Нмс2

Iy = 1500 Нмс2

Iz = 2500 Нмс2

2

400 сек


Страница: