Разбегание галактик. Роль этого в эволюции ВселеннойРефераты >> Авиация и космонавтика >> Разбегание галактик. Роль этого в эволюции Вселенной
Если галактики разбегаются, то это значит, что раньше они были ближе друг к другу, иначе вся Вселенная вообще была сжата если не в точку, то в нечто очень маленькое, а потом последовал «большой взрыв». Зная скорость разбегания галактик после «большого взрыва», можно подсчитать и время, которое прошло со времени «взрыва». Проблема подсчёта этого времени не так уж и проста. Несмотря на очень сложные подсчеты никто до сих пор точного ответа не дал, однако в общем учёные сходятся на времени от 13 до 20 миллиардов лет.
III. Космические монстры
Зная примерно возраст нашей Вселенной, мы можем определить и её примерные размеры.
После второй мировой войны, когда уже были изобретены радиолокаторы, в астрономии стали использоваться радиотелескопы. С их помощью были открыты различные радиоисточники, в том числе к 1963 г. стали известны пять точечных источников космического радиоизлучения, которые сначала назвали «радиозвёздами». Но вскоре этот термин был признан не очень удачным, и эти источники радиоизлучения были названы квази-звёздными радиоисточниками, или, сокращённо, квазарами.
Исследуя спектр квазаров, астрономы выяснили, что квазары вообще самые далёкие из известных космических объектов. Сейчас известно около 1500 квазаров. Самый далёкий из них удалён от нас примерно на 15 миллиардов световых лет[7]. Одновременно он и самый быстрый. Он убегает от нас со скоростью, близкой к скорости света. Поэтому размеры нашей Вселенной ограничиваются радиусом в 15 миллиардов световых лет, или 142.000.000.000.000.000.000.000 километра.
Квазар излучает свет в десятки и сотни раз сильнее, чем самые крупные галактики, состоящие из сотен миллиардов звёзд. Квазары излучают во всём электромагнитном диапазоне от рентгеновских волн до радиоволн. Даже средний квазар ярче 300 миллиардов звёзд, а блеск квазаров меняется с очень маленькими периодами – недели, дни и даже минуты. Поскольку в мире нет ничего быстрее света, то это значит, что размеры квазаров очень малы. Раз весь квазар меняет свою яркость, значит это единый процесс, который по квазару не может распространяться со скоростью большей скорости света. Например, квазар с периодом изменения яркости в 200 секунд должен иметь поперечник не более радиуса земной орбиты и при этом излучать света больше чем 300 миллиардов звёзд.
Единого мнения о природе квазаров ещё нет. Однако, они находятся от нас на таком расстоянии, что свет до нас доходит за время до 15 миллиардов световых лет. А значит, мы видим процессы, которые у нас происходили примерно 15 миллиардов лет назад, то есть после «большого взрыва».
Вот теперь мы можем сказать, что радиус нашей Вселенной примерно 15 миллиардов световых лет. Как мы отмечали выше, возраст её примерно и составляет 15 миллиардов световых лет.
Однако, на этот счет есть определённые сомнения. Действительно, квазар, чтобы послать нам луч света, уже должен быть там, где мы его видим. Поэтому, если сам он двигался со скоростью света, от точки «большого взрыва» должен лететь в течение тех же 15 миллиардов лет. Поэтому возраст вселенной должен быть, по крайней мере вдвое больше, то есть – 30 миллиардов лет.
Нельзя не отметить, что измерения характеристик объектов, находящихся на краю Вселенной, производится на пределах возможности астрономических инструментов. Кроме того, споры между учёными ещё далеки от завершения. Поэтому точность приведенных цифр весьма относительна. В связи с этим, я использую цифры, которые упоминаются в большинстве публикаций.
Что дальше за этими пределами, мы не знаем. Возможно, не узнаем никогда. И можно считать, что нет ничего. Поэтому наша Вселенная и есть Вселенная вообще.
Посмотрим, что же наполняет нашу Вселенную.
В общем, она почти пуста. В невероятно огромном пустом пространстве изредка вкраплены скопления галактик (фото 2). Сегодня крупнейшие телескопы позволяют зарегистрировать галактики по всей Вселенной, и подсчитано, что в ней около двухсот миллионов (некоторые полагают, что до полутора миллиардов) галактик, каждая из которых состоит из миллиардов звёзд. Группы скопления и сверхскопления галактик расположены главным образом в сравнительно тонких слоях или цепочках. Слои и цепочки пересекаются, соединяются друг с другом и образуют колоссальные ячейки неправильной формы, внутри которых галактик практически нет.
Понятие «чёрные дыры» во многом базируется на теории относительности Эйнштейна. Но теория эта не так уж и проста, поэтому попытаемся объяснить это понятие более понятно для непрофессионалов.
Прежде всего, мы знаем, что такое гравитация. По крайне мере знаем, что если бросить стакан, то он упадёт на землю. Земля его притягивает. Вообще все тела, обладающие массой, притягиваются друг к другу. Свет тоже обладает массой. Ещё Столетов определил, что свет давит на освещённое тело. Действительно, свет это электромагнитная волна, которая обладает энергией. А энергия, согласно уравнению Энштейна - Е = mс2, обладает массой m. Поэтому свет также притягивается массой. Например, если луч света пролетает мимо планеты или звезды, то он отклоняется в её сторону. Причём, чем больше звезда притягивает свет, тем больше он отклоняется.
Может быть, такое сильное гравитационное притяжение, что свет не только упадёт на звезду, но даже квант светового излучения не сможет её покинуть. И не только свет, но и вообще ничего не сможет покинуть тело с такой мощной гравитацией. Всё на неё будет только падать. Это называется гравитационный коллапс. Тело такое называется отон (от аббревиатуры ОТО – общая теория относительности) или попросту - «Чёрная дыра».
Тем не менее есть, всё-таки, процессы при которых что-то чёрную дыру покидает. Здесь мы уже вторгаемся в область квантовой механики. Вообще говоря, квантовая механика это набор формул, которые позволяют математически описать некоторые не очень понятные физические явления в области физики элементарных частиц. Сама же природа этих явлений не очень понятна и самим физикам.
В принципе, эффекты квантовой механики происходят из-за того, что элементарные частицы являются как бы одновременно и частицами, и волнами. Причём, чем меньше частица, тем больше она проявляет волновые свойства. Мало того, очень маленькие частицы вовсе не похожи на маленькие шарики. Они как бы могут с определённой вероятностью быть в разных местах. Причём, никакие преграды их не останавливают. Но чаще всего они находятся в некотором одном месте. Этот эффект, называемый «Туннельный эффект», используется в технике. Например, в стабилитронах, это специальный полупроводниковый диод, применяемый часто в стабилизаторах напряжения, есть в блоке питания любого компьютера или телевизора. Так вот, размеры чёрной дыры сравнительно небольшие, а масса там огромная. Поэтому очень маленькие элементарные частицы в силу своей квантовой природы могут оказаться вне чёрной дыры и больше туда не возвращаются. Это называется испарение чёрной дыры. Поскольку чёрная дыра имеет своё гравитационное поле, а также магнитное и электрические поля и быстро вращается, то испаряющиеся частицы не образуют сферически симметричной оболочки вокруг чёрной дыры, а формируют как бы струи в двух противоположных направлениях.