Нейтрон-нейтронный метод и его применение
Содержание
Введение
1. Общая характеристика нейтронных методов
2. Схема нейтронных методов
3. Определение влажности грунтов и почв
4. Изучение пористости горных пород
5. Анализ на нейтронопоглощающие элементы
Заключение
Список литературы
Введение
Нейтрон-нейтронный метод - исследование интенсивности вторичного излучения, возникающего при облучении нейтронами горных пород. Используется для выделения в разрезе водосодержащих и нефтесодержащих пород.
Нейтрон-нейтронный каротаж основан на облучении горных пород быстрыми нейтронами от источника и регистрации нейтронов по разрезу скважины, которые в результате взаимодействия с породообразующими элементами замедляются.
Регистрируемая интенсивность тепловых нейтронов зависит от замедляющей и поглощающей способности горной породы. Наибольшая потеря энергии нейтрона наблюдается при соударении с ядром, имеющего массу равную единице, т.е. с ядром водорода. Таким образом по данным ННКТ можно определять водородосодержание горных пород, которое для пластов-коллекторов напрямую связано с пористостью.
Нейтрон-нейтронный каротаж в комплексе методов общих исследований применяется при решении следующих задач:
литостратиграфическое расчленение разрезов с возможностью построения детальной литостратиграфической колонки;
выделение проницаемых пластов и покрышек (установление их толщин, строения по однородности);
предварительное выделение нефтегазонасыщенных пластов и оценка характера насыщения коллекторов;
определение пористости горных пород;
1. Общая характеристика нейтронных методов
При облучении горных пород нейтронами эти частицы, лишенные электрических зарядов, свободно проникают сквозь электронные оболочки и взаимодействуют непосредственно с ядрами атомов. Взаимодействие нейтронов с ядром управляется ядерными силами, которые проявляются при каждом столкновении нейтрона с ядром. Действие ядерных сил может привести к рассеянию и поглощению нейтронов, причем поглощение сопровождается разнообразными ядерными реакциями. Исследуя рассеяние и поглощение нейтронов, можно идентифицировать химические элементы, на ядрах которых протекают эти процессы, что и используется в нейтронных методах каротажа.
Вероятность взаимодействия нейтронов с ядрами определенного сорта характеризуется полным нейтронным сечением σ, равным сумме сечений рассеяния σр и поглощения σп нейтронов:
σ (Е) = σр (Е) + σп (Е) (1)
Полное сечение а измеряется в барнах и представляет собой эффективную площадь ядра, которая обычно больше его геометрического сечения. Для быстрых нейтронов, например, σ ≈ 2πr2, где r - радиус ядра, зависимость сечений от энергии Е нейтронов может быть очень сложной. Кроме того, сечения зависят и от сорта ядер. При данной энергии для одних ядер преобладает рассеяние, а для других - поглощение нейтронов.
Основным процессом взаимодействия быстрых нейтронов (с Е>0,1 МэВ) с ядрами является рассеяние, которое может быть упругим и неупругим. При неупругом рассеянии нейтрон может возбудить ядро. Это возбуждение снимается путем испускания γ-излучения. Ядерная реакция неупругого рассеяния записывается в виде (n, n', γ). При рассеянии нейтроны теряют энергию, т.е. замедляются. Когда энергия нейтронов станет меньше 0,1 МэВ, неупругое рассеяние практически прекращается, и дальнейшее замедление нейтронов происходит путем упругих столкновений.
Сечение поглощения увеличивается с уменьшением энергии нейтронов. Это легко понять, если учесть, что медленный нейтрон может сравнительно долго находиться вблизи ядра. Поэтому возрастает вероятность захвата нейтрона ядром под действием ядерных сил.
Реакция радиационного захвата (n, γ) наиболее типична для полностью замедлившихся нейтронов. Энергия их соизмерима с энергией теплового движения атомов и молекул. Такие нейтроны называют тепловыми. Средняя энергия тепловых нейтронов при температуре 20°С составляет 0,025 эВ. Тепловые нейтроны вызывают реакцию (n, γ) на ядрах всех элементов, за исключением гелия.
В надтепловой области, т.е. в диапазоне энергий от долей и до нескольких сотен электронвольт, сечения поглощения для ряда элементов характеризуются наличием резонансов. Это означает резкое увеличение вероятности реакции (n, γ) для нейтронов с энергией, совпадающей с максимумами на кривой σп (Е). Такие нейтроны называют резонансными.
Величины σр и σп в формуле (1) относятся к единичному ядру, поэтому их часто называют микроскопическими сечениями. На практике обычно пользуются макроскопическими нейтронными сечениями Σ, которые измеряются в сантиметрах в минус первой степени и учитывают общее количество N атрмов данного сорта в кубическом сантиметре вещества:
Σр (п) (E) = σр (п) (Е) N (2)
Соответственно полное макроскопическое сечение будет равно
Σ (Е) = Σ p (E) + Σ п (Е) (3)
Полное макроскопическое сечение горной породы легко вычислить, если известен ее химический состав:
Σ (Е) = Σi σi (Е) Ni, (4)
где σi (E) - полное макроскопическое сечение для ядер i-copта; Ni - количество i-ядер в 1 см3, причем суммирование ведется по всем химическим элементам и их изотопам.
Необходимо отметить, что нейтронные сечения, в особенности сечение поглощения, для разных элементов периодической таблицы варьируют в широких пределах. Поэтому некоторые элементы, даже при ничтожном содержании их в породе, могут вносить в Σ значительный вклад. К элементам с аномально большими сечениями поглощения относятся ртуть, бор, кадмий и многие редкие земли.
Выше уже говорилось, что при облучении горной породы потоком быстрых нейтронов потери энергии при рассеянии приводят к замедлению нейтронов. Для большинства горных пород длина замедления в основном зависит от содержания водорода.
2. Схема нейтронных методов
Взаимное расположение в скважинном приборе источника нейтронов и детекторов, используемых в нейтронных методах каротажа, показано на рис.1. Измерения в нейтронных методах обычно производят в геометрии 4π, и нейтронное облако вокруг скважины и вызываемые им гамма-поля обладают осевой симметрией. Пунктирные траектории нейтронов, иллюстрирующие процессы взаимодействия и ядерные реакции, идущие на быстрых и медленных нейтронах, показаны на рисунке условно.
Рис.1. Схема взаимодействия нейтронов с веществом и ядерных реакций, используемых в нейтронных методах каротажа.
При осуществлении какого-либо конкретного метода в скважинном приборе обычно применяются не разнотипные детекторы γ-квантов (2а, 2г) или нейтронов (26, 2в), а один или несколько однотипных детекторов, рассчитанных на регистрацию только одного вида излучения.
В большинстве нейтронных методов каротажа используются радиоизотопные полониево-бериллиевые источники, испускающие быстрые нейтроны с энергией ~4 МэВ. Между детекторами 2 и источником 10 располагается экран 11 из парафина и свинца, защищающий детектор от воздействия прямого нейтронного и γ-излучения источника.