Повышение качества строительных материалов
Рефераты >> Строительство >> Повышение качества строительных материалов

Устройством для обнаружения дефектов методами неразрушающего контроля в изделиях из различных металлических и неметаллических материалов, является дефектоскоп. Дефектоскопы используются на транспорте, в различных областях машиностроения, в химической промышленности, нефтегазовой промышленности, в энергетике, строительстве, в научно-исследовательских лабораториях для определению свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов.

Магнитные методы испытания.

С помощью магнитометрического метода, основанного на взаимодействии магнитного поля с введенным в него ферромагнетиком – феррозондом (металлом) можно определить расположение и сечение арматуры, размер защитного слоя бетона. Магнитные методы нашли широкое применение для построения газоанализаторов на кислород, магнитная восприимчивость которого на два порядка превышает восприимчивость других газов.

Схема кулонометрической установки для определения толщины гальванопокрытий, они основаны на принципе вихревых токов, изменении магнитного потока, изменения силы притяжения магнита.

Применяют в основном для неразрушающего контроля изделий из ферромагнитных материалов, находящихся в намагниченном состоянии.

Основаны на измерении силы отрыва магнита от поверхности деталей из ферромагнитного металла, покрытых слоем немагнитного или слабомагнитного материала, либо на измерении магнитного потока в цепи, образованной сердечником электромагнита, покрытием и металлом детали.

Магнитные методы применительно к исследованию монокристаллов протеинов; характер связи металла с инсулином.

Находят широкое применение в решении проблем химии, металлургии и геологии.

Магнитопорошковая дефектоскопия изделий из ферромагнитных материалов – разработка технологий неразрушающего контроля, подбор магнитных порошков и концентратов магнитной суспензии, определение максимально достижимой чувствительности контроля, разработка технологии размагничивания деталей и конструкций сложной конфигурации, количественная оценка уровня допустимой остаточной намагниченности деталей и агрегатов. Магнитопорошковым методом могут контролироваться также стыковые сварные соединения, в том числе соединения, полученные электронно-лучевой сваркой.

Магнитная толщинометрия – контроль толщины любых немагнитных покрытий, наносимых на ферромагнитные детали; контроль толщины магнитных покрытий (Ni, Co и др.), нанесенных на немагнитные или слабомагнитные материалы.

Магнитная структуроскопия – контроль физико-механических характеристик; сортировка сталей по маркам; контроль качества термической обработки (структуры или твердости).

– Неразрушающий контроль небольших партий изделий с целью обнаружения тонких, невидимых глазом поверхностных дефектов материала типа трещин (закалочных, сварочных, шлифовочных, усталостных, штамповочных, литейных и др.), волосовин, флокенов, закатов, заковов, надрывов, рихтовочных трещин, некоторых видов расслоений и др.

Наряду с деталями, имеющими механически обработанные поверхности, контролю могут подвергаться детали, выплавленные методами точного литья (корковое литье, литье по выплавляемым моделям и др.). При этом обнаруживаются трещины, неспаи, рыхлоты и другие дефекты, а также цепочки пор.

Индукционный метод.

Индукционными магнитными методами измеряют по существу наведенный в детектирующих катушках потенциал, возникающий при воздействии на образец переменного поля.

Специалистами предприятия ООО НПП «Инженер-Строй» применяется прибор ИПА – МГ4, который позволяет измерять толщину защитного слоя бетона или определения диаметр арматурного стержня. Прибор оборудован выносным щупом, который плавно перемещают по поверхности контролируемого объекта, добиваясь минимального значения цифрового кода нижней строки индикатора и максимального тона звукового сигнала. Также, зная расположение оси и диаметр арматурного стержня, определяется толщина защитного слоя и соответственно наоборот, зная величину защитного слоя, определяется диаметр арматуры.

Инфракрасный метод испытания.

Его можно применять при поиске скрытых протечек в рулонных кровлях с любым основанием. Инфракрасный метод позволяет определить местонахождение скоплений влаги в верхних слоях покрытия поиском зон повышенных температур поверхности кровли, поскольку участки покрытия, содержащие влагу, имеют более высокую теплопроводность и теплоемкость, чем сухие участки. В теплое время года тепловая энергия от солнца лучше поглощается влажными участками покрытия и затем сохраняется в течение нескольких часов после заката, поэтому при осуществлении инфракрасного метода кровлю, как правило, сканируют ночью. Основными преимуществами инфракрасного метода являются достигаемая сплошность обследования кровли и высокая производительность, а недостатками – высокая стоимость инфракрасных камер, существенная зависимость метода от погоды, возможность его применения только в ночное время суток (как правило, до полуночи).

Радиоизотопный метод испытания.

Предпочтительнее других методов применять при проверке влагосодержания балластных и инверсионных кровель. Ограничено применение метода на кровлях из материалов, в состав которых входят углеводороды (в том числе битум). Метод основан на проверке присутствия водородных молекул (водяного пара) в верхних слоях покрытия. Метод осуществляется с помощью радиоизотопного влагомера, который способен определять влажность материала по количеству медленных отраженных нейтронов (выпущенных из быстрого нейтронного источника), так как при увеличении влажности материала количество отраженных нейтронов увеличивается, и показания радиоизотопного влагомера, соответственно, возрастают. Преимуществом метода является возможность его применения в широком диапазоне погодных условий и при любом уклоне кровли, а недостатком – его экологическая опасность.

Результаты выполняемого в Ростовском государственном строительном университете исследования по совершенствованию методов дефектоскопии строительных конструкций подтверждают работоспособность. А также достаточную эффективность каждого из представленных в данной статье методов и позволяют рекомендовать их (с учетом указанных преимуществ и ограничений по использованию) для массового применения при выявлении скрытых протечек в рулонных кровлях как строящихся, так и эксплуатируемых зданий.

Электрофизические методы испытания.

Основаны на проверке электроизоляционных свойств водоизоляционного ковра, которые резко ухудшаются в местах скрытых протечек кровли. К таким методам относятся метод разности потенциалов, а также высоковольтный и емкостной методы. Метод разности потенциалов (низковольтный метод). Предназначен для обнаружения скрытых протечек в кровлях, в которых водонепроницаемый ковер не является электрическим проводником, а основание выполнено из металла или железобетона.


Страница: