Исследование сопротивления вертикальным нагрузкам бипирамидальных свайРефераты >> Строительство >> Исследование сопротивления вертикальным нагрузкам бипирамидальных свай
где H2 - шаг узлов, находящихся на нижнем конце фундамента.
ar[NE1 + 1]
ar[NE1 + 2]
ar[NE + 1]=0
Рис. 2.5. Схема узлов на нижнем конце фундамента
В работе использовано понятие "связность элементов". Так как производится дискретизация поверхности фундамента в условиях осессимметричной задачи, то граничные элементы представлены прямыми линиями находящимися между граничными узлами и каждый граничный элемент, определяется если задать узлы которые его ограничивают (рис. 2.6).
2
i
1
Рис. 2.6. Схема к понятию связности элементов
В данной работе для наглядности введены отдельно связности i-х элементов на боковой поверхности фундамента, в плоскости нижнего конца, и по окружности фундамента:
inz[i,1] inz[i,2],
inc[i,1] inc[i,2],
int[i,1] int[i,2],
где i - номер граничного элемента;
1 , 2 - номера граничных узлов, окружающих связывающий i-й элемент (см. рис. 2.6).
2.2.3. Формирование матрицы коэффициентов влияния и свободных членов СЛАУ
При формировании коэффициентов глобальной матрицы влияния, отражающих зависимость перемещения точки наблюдения (i), когда источник возмущения находится в точке (j) используется решение Миндлина для силы приложений внутри упругого полупространства. Иногда для зависимости, когда действует единичная сила, эти решения называют фундаментальными. Для вертикальной силы Рв=1 зависимость для перемещений KW, когда точка наблюдения имеет координаты В(z,r), а источник возмущения находится на оси Z (радиальная координата равна нулю) на глубине с, запишется в виде:
с 0 0
r
с N
Рв
x(с,0) r B(z,r)
Z
Рис. 2.7. Схема обозначений в формуле Миндлина для сосредоточенной силы Рв, приложенной внутри упругого полупространства
(2.1)
где (2.2) (2.3)
G - модуль сдвига грунта;
E - модуль деформации грунта;
v - коэффициент Пуассона грунта.
KW - вертикальное перемещение точки В при действии вертикальной силы Рв=1 в точке x(0,с).
Применение решения Миндлина к задаче о сопротивлении фундамента вертикальной нагрузке состоит в том, что точка приложения силы и точка наблюдения, в которой возникают вертикальные перемещения находятся на боковой поверхности или на нижнем конце. В связи с этим в формуле (2.1) выражения для R1 и R2 принимают вид: (2.4) (2.5)
где (2.6)
r - горизонтальная компонента расстояния от оси Z до точки B;
arc - горизонтальная компонента расстояния от оси Z до точки x;
r1 - горизонтальная компонента расстояния от точки В (точки наблюдения) до точки x (источник, место приложения силы);
R2 - расстояние от точки x' (фиктивный источник) до точки B;
R1 - расстояние от точки x (источник) до точки B.
x(с,arc)
q B(z,r)
a
Рис. 2.8. Схема к определению координат точки приложения x(с,arc) и точки наблюдения B(z,r)
При определении коэффициентов влияния глобальной матрицы К учитываются различные варианты расположения источников (сил) и точек наблюдения.
dc
· i
Рис. 2.9. Схема к интегрированию решения Миндлина
(матрица KSS)
- источники расположены на боковой поверхности фундамента и точки наблюдения так же находятся на боковой поверхности. Для наглядности рассмотрим фундамент в вытрамбованном котловане (см. рис. 2.1) боковая поверхность которого разбита на j элементов (j=1,NE1) и имеются точки наблюдения i, находящиеся посредине граничных элементов. При вычислении коэффициента влияния входящего в матрицу [KSS]ij осуществляется интегрирование решения Миндлина по окружности находящейся на глубине с и радиусом arc и интегрирования полученных значений решения по высоте j-го элемента. Таким образом элементы подматрицы [KSS]ij определяются (2.7)
где (2.8)
· i
j
·
Рис. 2.10. Схема к интегрированию решения Миндлина
(матрица KBS)
- источники находятся на нижнем конце фундамента, а точки наблюдения на боковой поверхности. Количество элементов на нижнем конце j (1,NE2), а количество точек на боковой поверхности i=1,NE1. Интегрирование решения Миндлина выполняется по граничных элементам нижнего конца, представленных в виде кольца (рис. 2.10). При этом формируются коэффициенты подматрицы [KBS]ij (2.9)
где (2.10)
r - горизонтальная компонента расстояния от оси Z до точки В;
eps - горизонтальное расстояние от оси Z до точки источника x;
de - ширина граничного элемента j нижнего конца фундамента (ширина кольца).
i
· ·
Рис. 2.11. Схема к интегрированию решения Миндлина
(матрица KSB)
Если источники находятся на боковой поверхности фундамента, а точки наблюдения на нижнем конце. здесь формируются коэффициенты подматрицы [KSB]ij, i=1,NE2 j=1,NE1, которые учитывают влияние загружения боковой поверхности фундамента на перемещение элементов нижнего конца (2.11)
где (2.12)
j (элемент j)
i (точка наблюдения i)
· ·