Технология изготовления газосиликатных блоковРефераты >> Строительство >> Технология изготовления газосиликатных блоков
Изделия выдерживаются в формах до автоклавной обработки не более 1часа в отапливаемом помещении, либо в камере микроклимата, после чего срезают горбушку и разрезают на изделия нужных размеров.
Горбушку срезают машинами типа К-386/3, в настоящее время на заводах ячеистого бетона применяют резательную технологию, обеспечивающую высокую точность размеров, прямолинейность граней и отсутствие масляных пятен на поверхности. Благодаря резательной технологии повышается степень заполнения автоклава, снижается металлоемкость производства, резко уменьшается количество ручных операций.
Затем идет тепловлажностная обработка изделий. Для запаривания изделий в автоклавах используют влажный насыщенный водяной пар, быстро конденсирующийся и создающий водную среду в порах материала. При поступлении из котельной сухого насыщенного пара его увлажняют при помощи специальных увлажнителей. Перегретый пар для автоклавной обработки не применяется. Давление пара в изотермический период запаривания обычно составляет от 9 до 13 атмосфер (175-190оС). необходимость подъема давления до 9 атмосфер объясняется тем, что интенсивность растворения SiO2 в растворе Са(ОН)2 начинается при температуре 170-175 оС.
Расход пара на 1 м3газобетона колеблется от 225 до 300 кг.
В целях наиболее экономического использования пара автоклавы работают с перепуском пара из одного автоклава в другой: в только что загруженный изделиями автоклав сначала подают отработанный пар из другого автоклава, в котором изотермический период запаривания уже окончился, лишь после выравнивания давления в обоих автоклавах начинается выпуск в первый автоклав свежего пара из котельной. Перепуск обработанного пара из одного автоклава в другой осуществляется постепенным открыванием парового вентиля.
Процесс тепловлажностной обработки по характеру происходящих при этом физико-химических явлений может разделится на три стадии.
Первая стадия начинается с момента впуска пара в автоклав и продолжается до тех пор, пока температура обрабатываемых изделий не будет равна температуре пара. Эта стадия характеризуется преимущественно физическими явлениями. Впускаемый в автоклав пар начинается охлаждаться и конденсироваться от соприкосновения с холодными изделиями и внутренней поверхностью автоклава. Вначале конденсирующийся пар осаждается на внешних поверхностях изделий, а затем по мере повышения давления проникает в капилляры и поры изделий, конденсируясь в которых, также создает водную среду.
Вода растворяет окись кальция и другие растворимые соединения, входящие в состав изделий, и образует их растворы.
Следовательно, образование растворов в порах и капиллярах изделий будет в свою очередь способствовать конденсации водяного пара и дальнейшему увлажнению изделий. Наконец, капиллярные свойства материала являются одной из причин конденсации водяного пара в порах изделий. Таким образом, первая стадия тепловлажностной обработки в автоклавах заключается в основном в создании в порах материала и на его поверхности водной среды, необходимой для дальнейших физико-химических процессов, приводящих к образованию нужных форм гидросиликата кальция.
Вторая стадия начинается при достижении в автоклаве 175-190оС, чему способствует давление пара приблизительно 9-13 атмосфер. К началу этого периода поры материала заполнены уже водным раствором гидроокиси кальция, который начинает взаимодействовать с кремнеземом.
Растворимость SiO2 повышает с увеличением содержания в растворе гидроксильных ионов ОН- - от диссоциации Са(ОН)2, что в свою очередь зависит от температуры: с возрастанием температуры растворимость Са(ОН)2 увеличивается. В начале взаимодействия кремнезема с известью ионы ОН гидратируют молекулы SiO2 и образуют SiO2* Н2О. Гидратированные молекулы SiO2 вступают в соединение с ионами Са и образуют силикаты кальция, находящиеся в коллоидальном состоянии. Первоначально эти новообразования возникают на поверхности отдельных песчинок. По мере роста коллоидных оболочек вокруг зерен кварца эти оболочки образуют сплошную массу сросшихся между собой песчинок, окаймленных гелем гидросиликата кальция.
В дальнейшем коллоидный характер гидросиликата кальция переходит в кристаллические. Мелкие кристаллы, образующиеся в различных местах коллоидной массы, представляют собой многочисленные центры кристаллизации. Под влиянием температуры и при наличии водной среды они быстро разрастаются и создают своеобразную мелкокристаллическую структуру материала.
Таким образом, во второй стадии тепловлажностной обработки в водной среде при повышенной температуре происходит образование гидростликата кальция вначале в коллоидном состоянии, которое затем постепенно переходит в кристаллическое.
Третья стадия процесса тепловлажностной обработки протекает после прекращения подачи пара в автоклав; она характеризуется постепенным снижением давления в автоклаве. В результате снижения давления воды, заполняющая поры изделий, интенсивно испаряется, раствор становится насыщенным и происходит осаждение гидросиликата кальция, увеличивающего прочность сцепления отдельных песчинок. Продолжающееся обезвоживание способствует дегидратации соединений, составляющих массу материала. Наибольшее значение имеет дегидратация геля SiO2.
Таким образом, в последней стадии запаривания к основному фактору образования прочности материала – перекристаллизация гидросиликата кальция – добавляется фактор прочности от дегидратации геля кремнезема.
3. Проектирование технологии ячеистого бетона
3.1 Расчет количества оборудования
Расчет оборудования производится по формуле:
(1)
где: N - количество машин или установок, шт;
П - требуемая производительность технологического передела т/ч, м3/ч, шт/ч;
Пм - производительность машины или установки, т/ч, м3/ч, шт/ч;
Кио - коэффициент использования оборудования.
Помол песка производится в шаровой мельнице мокрым способом. Большинство мельниц имеет три камеры, длину до 13 м, диаметр 2,2 м, частоту вращения 23 мин -1. Мощность электропривода до 600 кВт. Производительность 9-16 т/ч.
=0,8 (т/ч перемалывается песка) / 9*0,94 ≈1 шаровая мельница.
Передвижная газобетономешалка СМ-553 вместимостью 4 м3 имеет привод для передвижения со скоростью 0,64 м/с, снабжена лопастной мешалкой с частотой вращения 49,5 мин -1. высота, ширина и длина установки – соответственно 3580,2720 и 2750 мм, масса 4060 кг.
Для повышения однородности смеси в вертикальной стенке корпуса газобетономешалка вмонтированы турбинки диаметром 500 мм с частотой вращения 1000 мин -1.
Исходные компоненты загружаются через люки, имеющиеся в крышке; готовую ячеистобетонную массу выгружают через затвор шлангового типа. Под затвором располагается лоток, предназначенный для заливки газосиликатной смеси в форму, установленную на виброплощадке. Сколько газорастворомешалок требуется можно высчитать исходя из того, что время одного перемешивания составляет 10мин, то есть перемешивание проходит в 6 циклов за 1 час.