Керамика. Её виды и применение в строительстве
Рефераты >> Строительство >> Керамика. Её виды и применение в строительстве

При сушке удаляют влагу, имеющую физико-химическую и физико-механическую связь; химическая связь в процессе сушки не нарушается. При сушке уменьшаются размеры изделия; более влажные внутренние слои препятствуют усадке в результате чего возникают напряжения, которые при определенных параметрах сушки могут привести к образованию трещин и деформации детали.

После сушки влажность изделия составляет 0.2-1%.

Сушка изделий осуществляется естественным путем - на воздухе, или принудительным путем в специальных установках.

Сушка естественным путем выполняется для небольших по размерам изделий и является длительным процессом, так как температура воздуха в помещении 20-25 ОС.

Принудительная сушка осуществляется конвективным (обдувом подогретым воздухом) радиационным и конвективно-радиационным способом в сушилках периодического и непрерывного действия.

Температурный режим и время сушки в сушилках периодического действия регулируются автоматически, а в сушилках непрерывного действия определяется скоростью движения изделий через 4 зоны сушки с температурой соответственно 50-60, 60-80, 80-100 и 100-120 ОС.

Обжиг.

При обжиге происходит спекание керамического материала в результате протекания ряда физико-химических процессов с приобретением обожженным изделиям определенных свойств. При обжиге происходит уплотнение и упрочнение материала за счет протекания процессов переноса и перераспределения веществ.

Установлено, что спекание происходит за счет следующих механизмов переноса вещества: 1) диффузионного, 2) жидкостного, 3) испарения и конденсации, 4) пластической деформации 5) реакционного. Для большинства радио- и электрокерамических материалов присущи 2 первых вида механизмов спекания - диффузионный и жидкостной.

Диффузионное спекание - характерно для соединения твердых частичек. Спекание протекает при температурах, когда элементы кристаллической решетки (атомы, ионы) приобретают определенную подвижность. Причиной диффузии являются дефекты кристаллической решетки - вакансии, т.е. пустоты в узлах кристаллической решетки.

Благодаря тепловому движению атом или ион кристаллической решетки может перескочить на соседнюю вакантную позицию, создавая на прежнем месте новую вакансию. Этим создаются условия для дальнейшего передвижения элементов кристаллической решетки.

Перед спеканием материал представляет собой пористое тело, состоящее из контактирующих друг с другом частиц и пор между ними. При определенной температуре вследствие поверхностной диффузии элементов решетки округляются углы частиц, их поверхность сглаживается, а в местах контакта частицы соединяются, образуя узкие перешейки. По мере утолщения перемычек имеющиеся в теле поры смыкаются, образуя меньшее количество закрытых более крупных пор. Дальнейшее уменьшение размера закрытых пор и их исчезновение связано с диффузией вещества область поверхности пор, являющихся источниками вакансии. Полное зарастание пор происходит при диффузии вакансий к границе, что может происходить при обжиге в вакууме или среде водорода.

Жидкостное спекание характерно для керамических масс, при обжиге которых используются расплавы.

Различают два случая жидкостного спекания 1) жидкая фаза не взаимодействует с твердой фазой; 2) жидкая фаза реагирует с твердой.

Спекание в первом случае определяется величиной поверхностного натяжения на границе фаз, вязкостью жидкой фазы, ее количеством и размером кристаллов. В этом случае так же образуются закрытые поры, удаление которых на поверхность затрудняется тем больше, чем меньше поверхность твердой фазы. В этом случае всегда имеются закрытые поры, объем которых в изделии составляет 3-8%.

При спекании во втором случае образующаяся жидкая фаза растворяет твердую фазу, а после насыщения расплава наступает процесс кристаллизации его. Выделение твердой фазы из расплава происходит в основном на поверхности оставшихся нерастворенных зерен крупной фазы и ростом их размеров. Частично кристаллы возникают и в расплаве, в этом случае они имеют малый размер. Процесс спекания протекает в три стадии.

На первой стадии спекания возникает жидкая фаза и под влиянием сил поверхностного натяжения происходит сближение частиц твердой фазы. На второй стадии происходит растворение твердой фазы жидкой в местах их контакта, дальнейшее сближение твердых частиц за счет поверхностного натяжения и начинается кристаллизация. На третьей фазе завершается кристаллизация и образуется скелет из кристаллической фазы.

Другие механизмы спекания. Спекание за счет испарения и конденсации. В основе этого процесса лежит перенос вещества с поверхности одной частицы на поверхность другой связанный с различной величиной упругости пара.

Спекание за счет пластической деформации происходит при одновременном воздействии температуры и движения (горячее прессование), позволяет получать практически беспористые материалы.

При реакционном спекании образуется новое вещество за счет кристаллической фазы спекаемого материала из газообразной фазы другого вещества.

Обжиг осуществляют в печах периодического или непрерывного действия с использованием жидкого топлива, генераторного газа, нефти или электронагрева.

Обжиг осуществляют в три периода. В первый период нагревают со скоростью 140 ОС в час от 150-200 ОС до 850-1000 ОС в окислительной атмосфере. При этом удаляют остатки влаги и химически связанную воду, выгорают органические вещества, разлагаются карбонаты с выделением СО2, образуются окислы, образуется требуемая фаза. Во втором периоде (выдержка) нагрев со скоростью 10-20 ОС в час в окислительной среде до температуры 900-1050 ОС с целью выравнивания температуры во всех участках и выгорания остатков органических веществ. В третий период подъем температуры ведут со скоростью 50-80 ОС в час до максимальной температуры 1250-1750 ОС, заканчивают его 2-3 часовой выдержкой при максимальной температуре. Рабочая среда в этом случае нейтральная. Затем охлаждение изделий с печью. Температуру нагрева и время выдержки для конкретного материала подбирают опытным путем.

В процессе спекания наблюдается усадка и образование новых зерен путем рекристаллизации. Процессом рекристаллизации можно управлять. Изменяя температуру и время выдержки и скорость нагрева можно получать различную величину зерен и различные значения электромагнитных параметров: при малой величине зерна повышенная механическая прочность; большая коэрцитивная сила, меньшая магнитная проницаемость. С увеличением зерна, кроме уменьшения механической прочности, ухудшаются параметры петли гистерезиса ферритов с ППГ, повышается магнитная проницаемость у ферритов с округлой петлей гистерезиса. Пористость при спекании изделий играет существенное значение для магнитных характеристик. Различают межзеренную и внутризеренную пористость. Внутризеренная пористость сильно ухудшает начальную магнитную проницаемость и параметры петли гистерезиса.

При спекании крупногабаритных изделий регулировкой скорости и температуры не удается получить равномерные свойства изделия по поперечному сечению. Для получения равномерных свойств в исходные материалы вводят различные добавки. Добавки оксида алюминия или хрома к составам магний-марганцевых или литьевых ферритов приводит к уменьшению размеров зерен при других равных условиях, а добавка оксида цинка или кадмия - к росту зерен и уменьшению коэрцитивной силы.


Страница: